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Abstract. In this paper we present a new technique for worst-case
analysis of compression algorithms which are based on the Burrows-
Wheeler Transform. We deal mainly with the algorithm purposed by
Burrows and Wheeler in their first paper on the subject [6], called bw0.
This algorithm consists of the following three steps: 1) Compute the
Burrows-Wheeler transform of the text, 2) Convert the transform into
a sequence of integers using the move-to-front algorithm, 3) Encode the
integers using Arithmetic code or any order-0 encoding (possibly with
run-length encoding).

We prove a strong upper bound on the worst-case compression ratio
of this algorithm. This bound is significantly better than bounds known
to date and is obtained via simple analytical techniques. Specifically, we
show that for any input string s, and μ > 1, the length of the compressed
string is bounded by μ · |s|Hk(s) + log(ζ(μ)) · |s| + gk where Hk is the
k-th order empirical entropy, gk is a constant depending only on k and
on the size of the alphabet, and ζ(μ) = 1

1μ + 1
2μ + . . . is the standard zeta

function. As part of the analysis we prove a result on the compressibility
of integer sequences, which is of independent interest.

Finally, we apply our techniques to prove a worst-case bound on the
compression ratio of a compression algorithm based on the Burrows-
Wheeler transform followed by distance coding, for which worst-case
guarantees have never been given. We prove that the length of the com-
pressed string is bounded by 1.7286 · |s|Hk(s) + gk. This bound is better
than the bound we give for bw0.

1 Introduction

In 1994, Burrows and Wheeler [6] introduced the Burrows-Wheeler Transform
(BWT), and two new lossless text-compression algorithms that are based on this
transform. Following [15], we refer to these algorithms as bw0 and bw0RL. A well
known implementation of these algorithms is bzip2 [18]. This program typically
shrinks an English text to about 20% of its original size while gzip only shrinks
to about 26% of the original size (see Table 1 and also [1] for detailed results).
In this paper we refine and tighten the analysis of bw0. For this purpose we
introduce new techniques and statistical measures. We believe these techniques
may be useful for the analysis of other compression algorithms, and in predicting
the performance of these algorithms in practice.
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The algorithm bw0 compresses the input text s in three steps.

1. Compute the Burrows-Wheeler Transform, ŝ, of s. We elaborate on this stage
shortly.1

2. Transform ŝ to a string of integers ṡ = mtf(ŝ) by using the move to front
algorithm. This algorithm maintains the symbols of the alphabet in a list
and encodes the next character by its index in the list (see Section 2).

3. Encode the string ṡ of integers by using an order-0 encoder, to obtain the
final bit stream bw0(s) = order0(ṡ). An order-0 encoder assigns a unique
bit string to each integer independently of its context, such that we can
decode the concatenation of these bit strings. Common order-0 encoders are
Huffman code or Arithmetic code.

The algorithm bw0RL performs an additional run-length encoding (RLE) pro-
cedure between steps 2 and 3. See [6, 15] for more details on bw0 and bw0RL,
including the definition of run-length encoding which we omit here.

Next we define the Burrows-Wheeler Transform (bwt). Let n be the length of
s. We obtain ŝ as follows. Add a unique end-of-string symbol ‘$’ to s. Place all the
cyclic shifts of the string s$ in the rows of an (n+1)×(n+1) conceptual matrix.
One may notice that each row and each column in this matrix is a permutation
of s$. Sort the rows of this matrix in lexicographic order (‘$’ is considered smaller
than all other symbols). The permutation of s$ found in the last column of this
sorted matrix, with the symbol ‘$’ omitted, is the Burrows-Wheeler Transform,
ŝ. See an example in Figure 1. Although it may not be obvious at first glance,
bwt is an invertible transformation, given that the location of ‘$’ prior to its
omission is known to the inverting procedure. In fact, efficient methods exist for
computing and inverting ŝ in linear time (see for example [16]).

The bwt is effective for compression since in ŝ characters with the same con-
text2 appear consecutively. This is beneficial since if a reasonably small context
tends to predict a character in the input text s, then the string ŝ will show local
similarity – that is, symbols will tend to recur at close vicinity.

Therefore, if s is say a text in English, we would expect ŝ to be a string with
symbols recurring at close vicinity. As a result ṡ = mtf(ŝ) is an integer string
which we expect to contain many small numbers. (Note that by “integer string”
we mean a string over an integer alphabet). Furthermore, the frequencies of the
integers in ṡ are skewed, and so an order-0 encoding of ṡ is likely to be short.
This, of course, is an intuitive explanation as to why bw0 “should” work on
typical inputs. As we discuss next, our work is in a worst-case setting, which
means that we give upper bounds that hold for any input. These upper bounds
are relative to statistics which measure how “well-behaved” our input string
is. An interesting question which we try to address is which statistics actually
capture the compressibility of the input text.
1 For compatibility with other definitions, we actually need to compute the bwt of

s in reversed order, that is from right to left. This does not change our results and
does not effect the compression ratio significantly (see [10] for a discussion on this),
so we ignore this point from now on.

2 The context of length k of a character is the string of length k preceding it.
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Fig. 1. The Burrows-Wheeler transform for the string s = mississippi. The matrix on
the right has the rows sorted in lexicographic order. ŝ is the last column of the matrix,
i.e. ipssmpissii, and we need to store the index of the symbol ‘$’, i.e. 6, to be able to
get the original string.

Introductory Definitions. minus .1em Let s be the string which we compress,
and let Σ denote the alphabet (set of symbols in S). Let n = |s|, and h = |Σ|.
Let nσ be the number of occurrences of the symbol σ in s. Let Σk denote the set
of strings of length k over Σ. Let Σ∗ =

⋃
k≥0 Σk denote the set of all (finite)

strings over Σ. For a compression algorithm a we denote by a(s) the output of
a on a string s. The zeroth order empirical entropy of the string s is defined as
H0(s) =

∑h−1
i=0

ni

n log n
ni

. (All logarithms in the paper are to the base 2. In this
context, we define 0 log(n/0) = 0, for any n). For any word w ∈ Σk, let ws denote
the string consisting of the characters following all occurrences of w in s. The value
Hk(s) = 1

n

∑
w∈Σk |ws| H0(ws) is called the k-th order empirical entropy of the

string s. In [15] these terms, as well as bwt, are discussed in greater depth.
We also use the zeta function, ζ(μ) = 1

1μ + 1
2μ + . . ., and the truncated zeta

function ζh(μ) = 1
1μ + . . . + 1

hμ . We denote by [h] the integers {0, . . . , h − 1}.

History and Motivation. Define the compression ratio of a compression
algorithm to be the average number of bits it produces per character in s. It is
well known that the zeroth order empirical entropy of a string s, H0(s), is a lower
bound on the compression ratio of any order-0 compressor [7, 12]. Similarly, the
k-th order empirical entropy of a string s, denoted by Hk(s), gives a lower bound
on the compression ratio of any encoder, that to encode a character x, is allowed
to use only the k characters preceding x (the context of length k of x). For this
reason the compression ratio of compression algorithms is traditionally compared
to Hk(s), for various values of k. Another widely used statistic is H∗

k (s), called
the modified k-th order empirical entropy of s. This statistic is slightly larger
than Hk, yet it still provides a lower bound on the bits-per-character ratio of
any encoder that is based on a context of k characters. We do not define H∗

k

here, as we present bounds only in terms of Hk. See [15] for more details on H∗
k .
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In 1999, Manzini [15] gave the first worst-case upper bounds on the compres-
sion ratio of several bwt-based algorithms. In particular, Manzini bounded the
total bit-length of the compressed text bw0(s) by the expression

8 · nHk(s) + (0.08 + Corder0) · n + log n + g′k . (1)

for any k ≥ 0. Here Corder0 is a small constant, defined in Section 2, which
depends on the parameters of the Order-0 compressor which we are using, and
g′k = hk(2h logh + 9) is a constant that depends only on k and h. Manzini also
proved an upper bound of 5 · nH∗

k (s)+ g′′k on the bit-length of bw0RL(s), where
g′′k is another constant that depends only on k and h.

In 2004, Ferragina, Giancarlo, Manzini and Sciortino [10] introduced a bwt-
based compression booster. They show a compression algorithm such that the
bit-length of its output is bounded by

1 · nHk(s) + Corder0n + log n + g′′′k . (2)

(This algorithm follows from a general compression boosting technique. For de-
tails see [10]). As mentioned above this result is optimal, up to the Corder0n +
log n + g′′′k term. The upper bounds of this algorithm and its variants based on
the same techniques are theoretically strictly superior to those in [15] and to
those that we present here. However, implementations of the algorithm of [10]
by the authors and another implementation by Manzini [14], give the results
summarized in Table 1. These empirical results surprisingly imply that while
the algorithm of [10] is optimal with respect to nHk in a worst-case setting, its
compression ratio in practice is comparable with that of algorithms with weaker
worst-case guarantees. This seems to indicate that achieving good bounds with
respect to Hk does not necessarily guarantee good compression results in prac-
tice. This was the starting point of our research. We looked for tight bounds on
the length of the compressed text, possibly in terms of statistics of the text that
might be more appropriate than Hk.

We define a new statistic of a text s, which we call the local entropy of s, and
denote it by le(s). This statistic was implicitly considered by Bentley et al. [4],
and by Manzini [15]. We also define l̂e(s) = le(ŝ). That is the statistic l̂e(s) is
obtained by first applying the Burrows-Wheeler transform to s and then comput-
ing the statistic le of the result. These statistics are theoretically oriented and
we find their importance to be two-fold. First they may highlight potential weak-
nesses of existing compression algorithms and thereby mark the way to invent bet-
ter compression algorithms. Second, they may be useful in understanding current
algorithms and proving better worse-case upper bounds for them.

Our Results. In this paper we tighten the analysis of bw0 and give a tradeoff
result that shows that for any constant μ > 1 and for any k, the length of the
compressed text is upper-bounded by the expression

μ · nHk(s) + (log ζ(μ) + Corder0) · n + log n + μgk . (3)

Here gk = 2k log h + hk · h log h. In particular, for μ = 1.5 we obtain the bound
1.5 · nHk(s) + (1.5 + Corder0) · n + log n + 1.5gk. For μ = 4.45 we get the bound
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Table 1. Results (in bytes) of running various compressors on the non-binary files from
the Canterbury Corpus [1]. The gzip results are taken from [1]. The column bw0 shows
the results of our implementation (in C++) of the bw0 algorithm, using Huffman
encoding as the order-0 compressor. The column marked [14] gives results from a
preliminary implementation of the booster-based compression algorithm supplied to us
by Manzini. The columns Booster(HC) and Booster(RHC) are our implementations of
the compression booster of [10]. Ferragina et al. [10] suggest two methods to implement
it: One using the algorithm HC, and one using the algorithm RHC (the interested reader
is referred to [10]).

File Name size gzip bzip2 bw0 [14] Booster(HC) Booster(RHC)
alice29.txt 152089 54181 43196 48915 47856 74576 79946
asyoulik.txt 125179 48819 39569 44961 42267 59924 61757

cp.html 24603 7965 7632 8726 8586 16342 16342
fields.c 11150 3122 3039 3435 3658 10235 10028

grammar.lsp 3721 1232 1283 1409 1369 2297 2297
lcet10.txt 426754 144562 107648 127745 116861 166043 177682

plrabn12.txt 481861 194551 145545 168311 154950 172471 183855
xargs.1 4227 1748 1762 1841 1864 2726 2726

4.45 · nHk(s) + (0.08 + Corder0) · n + log n + 4.45gk, thus surpassing Manzini’s
upper bound (1). Our proof is considerably simpler than Manzini’s proof of (1).

We prove this bound using two basic observations on the statistic le that we
define. Thereby we bypass some of the technical hurdles in the analysis of [15].
Our analysis actually proves a considerably stronger result. We show that the
size of the compressed text is bounded by

μ · le(ŝ) + (log ζ(μ) + Corder0) · n + log n . (4)

Empirically, this seems to give estimates which are quite close to the actual
compression, as seen in Table 2.

In order to get our upper bounds we prove in Section 3 a result on compression
of integer sequences, which may be of independent interest.

Here is an overview of the rest of the paper.

1. We prove a result on compressibility of integer sequences in Section 3.
2. We define the statistic l̂e in Section 2 and show its relation to Hk in Section

4.
3. We use the last two contributions to give a simple proof of the bound (3) in

Section 4.
4. We give a tighter upper bound for bw0 for the case that we are working over

an alphabet of size 2 in Section 4.1.
5. We outline a further application of our techniques to prove a worst-case

bound on the compression of a different BWT-based compressor, which runs
BWT, then the so-called distance-coder (see [5, 2]), and finally an order-0
encoder. The upper bounds proved are strictly superior to those proved for
bw0. This can be found in Section 5.
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Table 2. Results of computing various statistics on the non-binary files from the
Canterbury Corpus [1]. Numbers are in “bits” since the theoretical bounds in the
literature are customarily calculated in bits. The column denoted by H0(ṡ) gives the
result of the algorithm bw0 assuming an optimal order-0 compressor. The final three
columns show the bounds given by the Equations (4), (3), and (1). The difference
between the column of H0(ṡ) and the column marked (4) shows that our bound (4)
is quite tight in practice. It should be noted that in order to get the bound of (4) we
needed to minimize the expression in Equation (4) over μ. To get the bound of (3) and
(1) we needed to calculate the values of the corresponding equations for all k and pick
the best one.

File Name size H0(ṡ) LE(ŝ) (4) (3) (1)
alice29.txt 1216712 386367 144247 396813 766940 2328219
asyoulik.txt 1001432 357203 140928 367874 683171 2141646

cp.html 196824 67010 26358 69857.6 105033.2 295714
fields.c 89200 24763 8855 25713 43379 119210

grammar.lsp 29768 9767 3807 10234 16054 45134
lcet10.txt 3414032 805841 357527 1021440 1967240 5867291

plrabn12.txt 3854888 1337475 528855 1391310 2464440 8198976
xargs.1 33816 13417 5571 13858 22317 64673

Due to space limitation, many proofs are omitted. They can found in the full
version of the paper.

2 Preliminaries

Our analysis does not use the definitions of Hk and bwt directly. Instead, it
uses the following observation of Manzini [15], that Hk(s) is equal to a linear
combination of H0 of parts of ŝ, the Burrows-Wheeler transform of s.

Proposition 1 ([15]). Let s̃ be the string obtained from ŝ by deleting the occur-
rences in ŝ of the first k characters of s. (Note that these characters can appear
in arbitrary positions of ŝ). There is a partition s̃ = s̃1 . . . s̃t, with t ≤ hk, such
that:

|s| Hk(s) =
t∑

i=1

|s̃i| H0(s̃i) . (5)

Now we define the move to front (mtf) transformation, which was introduced
in [4]. mtf encodes the character s[i] = σ with an integer equal to the number
of distinct symbols encountered since the previous occurrence of σ in s. More
precisely, the encoding maintains a list of the symbols ordered by recency of
occurrence. When the next symbol arrives, the encoder outputs its current rank
and moves it to the front of the list. Therefore, a string over the alphabet Σ
is transformed to a string over [h] (note that the length of the string does not
change).3

3 In order to completely determine the encoding we must specify the status of the
recency list at the beginning of the procedure. Here and in the future we usually
ignore this fact.



288 H. Kaplan, S. Landau, and E. Verbin

mtf has the property that if the input string has high local similarity, that
is if symbols tend to recur at close vicinity, then the output string will consist
mainly of small integers. We define the local entropy of a string s to be le(s) =∑n

i=1 log(mtf(s)[i] + 1). That is, le is the sum of the logarithms of the move-
to-front values plus 1. For example, for a string “aabb” and initial list where ‘b’
is first and ‘a’ is second, le(s) = 2 because the mtf values of the second a and
the second b are 0, and the mtf values of the first a and the first b are 1. We
define l̂e(s) = le(ŝ).

Note that le(s) is the number of bits one needs to write the sequence of inte-
gers mtf(s) in binary. Optimistically, this is the size we would like to compress
the text to. Of course, one cannot decode the integers in mtf(s) from the con-
catenation of their binary representations as these representations are of variable
lengths.

The statistics H0(s) and Hk(s) are normalized in the sense that they represent
lower bounds on the bits-per-character rate attainable for compressing s, which
we call the compression ratio. However, for our purposes it is more convenient
to work with un-normalized statistics. Thus we define our new statistic le to be
un-normalized. We define the statistics nH0 and nHk to be the un-normalized
counterparts of the original statistics, i.e. (nH0)(s) = n · H0(s) and (nHk)(s) =
n · Hk(s).

Let f : Σ∗ → R
+ be an (un-normalized) statistic on strings, for example f

can be nHk or le.

Definition 2. A compression algorithm A is called (μ, C)-f -competitive if for
every string s it holds that |A(s)| ≤ μf(s) + Cn + o(n), where o(n) denotes a
function g(n) such that limn→∞

g(n)
n = 0.

Throughout the paper we refer to an algorithm called “order0”. By this we
mean any order-0 algorithm, which is assumed to be a (1, Corder0)-nH0-
competitive algorithm. For example, CHuffman = 1 and CArithmetic ≈ 10−2 for a
specific time-efficient implementation of Arithmetic code [17, 19]. Furthermore,
one can implement arithmetic code so that it is (1, 0)-nH0-competitive, that is
the bit-length of the compressed text is bounded by nH0(s)+O(log n). Thus we
can use Corder0 = 0 in our equations. This implementation of arithmetic coding
is interesting theoretically, but is not time-efficient in practice.

We will often use the following inequality, derived from Jensen’s inequality:

Lemma 3. For any k ≥ 1, x1, . . . , xk > 0 and y1, . . . , yk > 0 it holds that
∑k

i=1 yi log xi ≤
(∑k

i=1 yi

)
· log

(�k
i=1 xiyi
�k

i=1 yi

)
.

In particular this inequality implies that if one wishes to maximize the sum of
logarithms of k elements under the constraint that the sum of these elements is
S, then one needs to pick all of the elements to be equal to S/k.
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3 Optimal Results on Compression with Respect to SL

In this section we look at a string s of length n over the alphabet [h]. We
define the sum of logarithms statistic: sl(s) =

∑n
i=1 log(s[i] + 1). Note that

le(s) = sl(mtf(s)). We show that in a strong sense the best sl-competitive
compression algorithm is an order-0 compressor. In the end of this section
we show how to get good le-competitive and l̂e-competitive compression
algorithms.

The problem we deal with in this section is related to the problem of universal
encoding of integers. In the problem of universal encoding of integers [9, 4] the
goal is to find a prefix-free encoding for integers, U : Z

+ → {0, 1}∗, such that for
every x ≥ 0, |U(x)| ≤ μ log(x+1)+C. A particularly nice solution for this is the
Fibonacci encoding [3, 11], for which μ = logφ 2 � 1.4404 and C = 1+logφ

√
5 �

2.6723 (here φ is the golden ratio, φ = (1 +
√

5)/2). An additional solution for
this problem was proposed by Elias [9]. This is an optimal solution, in the sense
described in [13]. For more information on universal encoding of integers see the
(somewhat outdated) survey paper [13].

Clearly a universal encoding scheme with parameters μ and C gives an (μ, C)-
sl-competitive compressor. However, in this section we get a better competitive
ratio, taking advantage of the fact that our goal is to encode a long sequence
over [h], while allowing an o(n) additive term.

An Optimal (μ, C)-SL-Competitive Algorithm. We show, using a tech-
nique based on Lemma 3, that the algorithm order0 is (μ, log ζ(μ) + Corder0)-
sl-competitive for any μ > 1. In fact, we prove a somewhat stronger
theorem:

Theorem 4. For any constant μ > 0, the algorithm order0 is (μ, log ζh(μ) +
Corder0)-sl-competitive.

Proof. Let s be a string of length n over alphabet [h]. Clearly it suffices to prove
that for any constant μ > 0, nH0(s) ≤ μsl(s) + n log ζh(μ).

From the definition of H0 it follows that nH0(s) =
∑h−1

i=0 ni log n
ni

, and from

the definition of sl we get that sl(s) =
∑n

j=1 log(s[j] + 1) =
∑h−1

i=0 ni log(i +

1). Therefore, it suffices to prove that
∑h−1

i=0 ni log n
ni

≤ μ
∑h−1

i=0 ni log(i + 1) +
n log ζh(μ).

Pushing the μ into the logarithm and moving terms around we get that it
suffices to prove that

∑h−1
i=0 ni log n

ni(i+1)μ ≤ n log ζh(μ).
Defining pi = ni

n and dividing the two sides of the inequality by n we get that
it suffices to prove that

∑h−1
i=0 pi log 1

pi(i+1)μ ≤ log ζh(μ).

Using Lemma 3 we obtain that
∑h−1

i=0 pi log 1
pi(i+1)μ =

∑
0≤i≤h−1

pi 
=0
pi log 1

pi(i+1)μ

≤ log
(

∑
0≤i≤h−1

pi 
=0
pi

1
pi(i+1)μ

)

= log
(

∑
0≤i≤h−1

pi 
=0

1
(i+1)μ

)

≤ log ζh(μ). 	


In particular we get the following corollary.
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Corollary 5. For any constant μ > 1, the algorithm order0 is (μ, log ζ(μ) +
Corder0)-sl-competitive.

One also gets the following analogous result with respect to L̂E:

Corollary 6. For any constant μ > 0, the algorithm bw0 is (μ, log ζh(μ) +
Corder0)-l̂e-competitive

A Lower Bound for SL-Competitive Compression. Theorem 4 shows that
for any μ > 0 there exists an (μ, log ζh(μ) + Corder0)-sl-competitive algorithm.
We now show that for any fixed values of μ and h there is no algorithm with a
better competitive ratio. Note that the lower bound that we get does not include
the constant Corder0.

Theorem 7. Let μ > 0 be some constant. For any C < log ζh(μ) there is no
(μ, C)-sl-competitive algorithm.

4 The Entropy Hierarchy

In this section we show that the statistics nHk and l̂e form a hierarchy, which
allows us to percolate upper bounds down and lower bounds up. Specifically, we
show that for each k,

l̂e(s) ≤ nHk(s) + O(1) (6)

where the O(1) term depends on k and h (recall that h is the size of the alphabet).
The known entropy hierarchy is

. . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (7)

Which in addition to (6) gives us:

l̂e(s) . . . � . . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (8)

(O(1) additive terms are hidden in the last formula).
Thus any (μ, C)-l̂e-competitive algorithm is also (μ, C)-nHk-competitive. To

establish this hierarchy we need to prove two properties of le: that it is at most
nH0 + o(n), and that it is convex (in a sense which we will define).

Some of the following claims appear, explicitly or implicitly, in [4, 15]. We
specify them in a form that would help to understand the rest of the analysis.

Manzini [15] gave the following corollary of a theorem of Bentley et al. [4].

Lemma 8 ([15], Lemma 5.4). le(s) ≤ nH0(s) + h log h.

In addition, we need the following lemma about le.

Lemma 9. Let s be a string of length n and let s′ be a string obtained by deleting
exactly one character from s. Then le(s) ≤ le(s′) + 2 logh.

We now prove that le is a convex statistic. That is, one cannot gain much by
stopping mtf in the middle and restarting it with a different recency list.
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Lemma 10 (LE is a convex statistic, implicitly stated in [15]). Let s =
s1 . . . st. Then le(s) ≤

∑
i le(si)

(For the last lemma, and for the lemmas before it, we define the initial state
of the recency list of le as the worst possible state. If we define it differently,
we might incur an additive term of th log h in the last lemma. This would not
significantly change our bounds).

From these Lemmas one can derive the hierarchy result:

Theorem 11. For any k ≥ 0 and any string s, |s| Hk(s) ≥ l̂e(s) − 2k log h −
hk · h logh.

Using Corollary 6 together with Theorem 11 allows us to derive the main result
of this paper:

Theorem 12. For any k ≥ 0 and for any constant μ > 0, the algorithm
bw0 is (μ, log ζh(μ) + Corder0)-nHk-competitive (on strings from an alphabet of
size h).

4.1 An Upper Bound and a Conjecture About BW0

In the case where the alphabet size is 2 we were able to prove an improved upper
bound for bw0:

Theorem 13. bw0 is (2, Corder0)-nH0-competitive for texts over an alphabet
of size 2.

We believe that this upper bound is true in the general setting. Specifically, we
leave the following conjecture as an open problem.

Conjecture 1. bw0 is (2, Corder0)-nHk-competitive.

5 A (1.7286, Corder0)-nHk-Competitive Algorithm

In this section we analyze the bwt with distance coding compression algorithm,
bwdc. This algorithm was invented but not published by Binder (see [5, 2]), and
is described in a paper of Deorowicz [8]. The distance coding procedure, dc, will
be described shortly. The algorithm bwdc compresses the text by running the
Burrows-Wheeler Transform, then the distance-coding procedure, and then an
Order-0 compressor. It also adds to the compressed string auxiliary information
consisting of the positions of the first and last occurrence of each character. In
this section we prove that bwdc is (1.7286, Corder0)-nHk-competitive.

First we define a transformation called dist: dist encodes the character
s[i] = σ with an integer equal to the number of characters encountered since
the previous occurrence of the symbol σ. Therefore, dist is the same as mtf,
but instead of counting the number of distinct symbols between two consecutive
occurrences of σ, it counts the number of characters. In dist we disregard the
first occurrence of each symbol.
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The transformation dc converts a text (which would be in our case the
Burrows-Wheeler transform of the original text) to a sequence of integers by
applying dist to s and disregarding all zeroes.4 It follows that dc produces one
integer per block of consecutive occurrences of the same character σ. This integer
is the distance to the previous block of consecutive occurrences of σ. It is not
hard to see that from dc(s) and the auxiliary information we can recover s.

As a tool for our analysis, let us define a new statistic of texts, ld. The
ld statistic is similar to le, except that it counts all characters between two
successive occurrences of a symbol, instead of disregarding repeating symbols.
Specifically, ld(s) =

∑
i log(dist(s)[i] + 1). For example, the ld value of the

string “abbbab” is log 4 + log 2 = 3. From the definition of ld and dc, it is easy
to see that sl(dc(s)) = ld(s).

We can now state the following theorem.

Theorem 14. For any k ≥ 0 and for any constant μ > 1, the algorithm bwdc

is (μ, log(ζ(μ) − 1) + Corder0)-nHk-competitive.

To prove Theorem 14 we follow the footsteps of the proof of Theorem 12 outlined
in Sections 3 and 4, where we use dc instead of mtf, and ld instead of le. The
term log(ζ(μ) − 1) appears instead of log ζ(μ) because the summations in the
proof of Theorem 4 now start at i = 1 instead of at i = 0 (this is because we
omitted all zeroes, so all characters of the alphabet are in this case at least 1).

Let μ0 ≈ 1.7286 be the real number such that ζ(μ0) = 2. Substituting μ = μ0
gives:

Corollary 15. For any k ≥ 0, the algorithm bwdc is (μ0, Corder0)-nHk-
competitive.

In the full version of this paper we also show that this approach cannot yield
better results. Namely, we prove that for any μ < μ0, there is no (μ, 0)-ld-
competitive algorithm, so we have a matching lower bound for Corollary 15.
We show that this lower bound holds even if the alphabet size is 2. We leave
as an open problem to determine whether there is a matching lower bound for
Theorem 14, or it can be improved.

6 Conclusions and Further Research

We leave the following idea for further research: In this paper we prove that the
algorithm bw0 is (μ, log ζ(μ))-l̂e-competitive. On the other hand, Ferragina et
al. [10] show an algorithm which is (1, 0)-nHk-competitive. A natural question
to ask is whether there is an algorithm that achieves both ratios. Of course, one
can just perform both algorithms and use the shorter result. But the question
is whether a direct simple algorithm with such performance exists. We are also

4 This is a simplified version of [8]. Our upper bound applies to the original version
as well, since the original algorithm just adds a few more optimizations that may
produce an even shorter compressed string.
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curious as to whether the insights gained in this work can be used to produce a
better BWT-based compression algorithm.
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