
B W T T U N N E L I N G

Universität Ulm

Institut für Theoretische Informatik

Leiter: Prof. Dr. Uwe Schöning

D I S S E R T A T I O N

zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät

für Ingenieurswissenschaften, Informatik und Psychologie

der Universität Ulm

vorgelegt von

Uwe Baier aus Ulm

Ulm, 2020

Uwe Baier
BWT Tunneling

AMTIERENDER DEKAN:
Prof. Dr. Maurits Ortmanns

GUTACHTER:
Prof. Dr. Enno Ohlebusch
Prof. Dr. Travis Gagie
Prof. Dr. Jacobo Torán

TAG DER PRÜFUNG:
14.12.2020

A B S T R A C T

The Burrows-Wheeler-Transform (BWT) is a well-known reversible text transforma-
tion invented by David J. Wheeler around 1978 and published by Mike Burrows and
David J. Wheeler in 1994. The key idea of the transform is to sort all suffixes of a
given string S in lexicographic order and to concatenate all (cyclically) preceding
characters of the sorted suffixes, resulting in a new string L. It is well-known that S
can be reconstructed solely from string L, and that L has some intriguing properties
making it very helpful for lossless data compression as well as sequence analysis.

One such property comes from the observation that, in real-world texts, similar
contexts are succeeded (but also preceded) by similar characters. For example, in
English text, the letter “q” is commonly followed by the letter “u”. Moving over
to the BWT, the lexicographically sorted suffixes serve as a kind of context, and
thus the BWT gathers preceding characters of similar contexts. As a result, the BWT
string L typically contains long repetitions of the same character, making it highly
compressible using, e.g., run-length encoding.

The observation that similar contexts are preceded by similar characters can
naturally be extended to the observation that similar contexts are preceded by similar
strings, e.g. the string “puter” typically is preceded by “com”. A new technique
called tunneling is able to exploit this observation, leading to a significant reduction
of the size of BWT-based data structures, and will therefore be the main topic of this
thesis.

In addition to the pure theory behind tunneling, applications of the technique to
other BWT fields are shown: in the case of lossless data compression, the technique
allows for the building of a BWT-based data compressor achieving compression
rates competitive or even superior to those of today’s best lossless data compressors.
In the field of sequence analysis, tunneling allows for the representation of some
string-based data structures at an unprecedented level of succinctness.

iii

P U B L I C A T I O N S

The following list shows publications that contain the main ideas of this thesis.

[Bai18] Uwe Baier. “On Undetected Redundancy in the Burrows-Wheeler
Transform.” In: Annual Symposium on Combinatorial Pattern Matching.
CPM ’18. 2018, 3:1–3:15.

[BD19] Uwe Baier and Kadir Dede. “BWT Tunnel Planning is Hard But Man-
ageable.” In: Proceedings of the 2019 Data Compression Conference. DCC
’19. © 2019 IEEE. 2019, pp. 142–151.

[Bai+20] Uwe Baier, Thomas Büchler, Enno Ohlebusch, and Pascal Weber. “Edge
minimization in de Bruijn graphs.” In: Proceedings of the 2020 Data
Compression Conference. DCC ’20. © 2020 IEEE. 2020, pp. 223–232.

[OSB18] Enno Ohlebusch, Stefan Stauß, and Uwe Baier. “Trickier XBWT Tricks.”
In: String Processing and Information Retrieval. SPIRE ’18. 2018, pp. 325–
333.

Additionally, the author of this thesis was involved in the creation of the following
publications during his time at Ulm University:

[Bai16] Uwe Baier. “Linear-time Suffix Sorting - A New Approach for Suffix
Array Construction.” In: Annual Symposium on Combinatorial Pattern
Matching. CPM ’16. 2016, 23:1–23:12.

[BBO15] Uwe Baier, Timo Beller, and Enno Ohlebusch. “Parallel Construction of
Succinct Representations of Suffix Tree Topologies.” In: String Processing
and Information Retrieval. SPIRE ’15. 2015, pp. 234–245.

[BBO16] Uwe Baier, Timo Beller, and Enno Ohlebusch. “Graphical pan-genome
analysis with compressed suffix trees and the Burrows-Wheeler trans-
form.” In: Bioinformatics 32.4 (2016), pp. 497–504.

[BBO17] Uwe Baier, Timo Beller, and Enno Ohlebusch. “Space-Efficient Parallel
Construction of Succinct Representations of Suffix Tree Topologies.” In:
Journal of Experimental Algorithmics 22.1 (2017), 1.1:1–1.1:26.

v

The following list shows student projects which were supervised by the author of
this thesis and influenced this work:

[Arn19] Lisa Arnold. “Patternsuche in einer getunnelten BWT.” Bachelor’s
thesis. Ulm University, 2019.

[Ded18] Kadir Dede. “Blockwahl beim Tunneln von Burrows Wheeler Transfor-
mationen.” Elaboration of Project Algorithm Engineering 2018 (draft
by Uwe Baier). 2018.

[Koc19] Matthias Koch. “Getunnelte komprimierte DeBruijn Graphen.” Bache-
lor’s thesis. Ulm University, 2019.

[Rät19] Caroline Räther. “Heuristic for Tunneled BWT Block Choice.” Elab-
oration of Project Algorithm Engineering 2018 (draft by Uwe Baier).
2019.

[RHRH20] Sebastian Reyes Häusler and Valentin Reyes Häusler. “Getunnelte
eXtended Burrows Wheeler Transformation.” Elaboration of Project
Algorithm Engineering 2019 (draft by Uwe Baier). 2020.

[Sab20] Christian Sabisch. “On the Complexity of BWT Tunnel Planning.” Mas-
ter’s thesis. Ulm University, 2020.

[Web20] Pascal Weber. “Kantenminimierung in DeBruijn Graphen.” Elaboration
of Project Algorithm Engineering 2019 (draft by Uwe Baier). 2020.

vi

A C K N O W L E D G M E N T S

First of all, I want to thank Prof. Dr. Enno Ohlebusch who gave me the opportunity
to write this work. It can absolutely not be taken for granted that a Ph. D. student
works on his own ideas for most of the time, but Prof. Dr. Enno Ohlebusch enabled
me to do so. I hereby want to thank him for the confidence, encouragement and
support he gave to me during my whole period as a Ph. D. student.

Next, I want to thank Prof. Dr. Jacobo Torán and Prof. Dr. Uwe Schöning for all of
the support they gave to me. It is clearly not self-evident that a student can knock
on the door of a professor to ask a question and to receive an answer immediately.
However, both Prof. Dr. Jacobo Torán and Prof. Dr. Uwe Schöning did so for me,
and even stopped their current work to discuss solution approaches when the issues
could not be answered immediately.

I am grateful for the nice and uncomplicated contact support of Prof. Dr. Travis
Gagie. During the SPIRE’18 conference, it has been said that he “sweated blood” to
organize the conference. Nonetheless, it was him which contacted me during the
conference actually, and afterwards, he always had an open ear to my questions and
proposals. Moreover, I want to thank Prof. Dr. Travis Gagie for the very good ideas
related to tunneling–they clearly influenced this work.

Another thanks goes to Prof. Dr. Hans Kestler and to Prof. Dr. Martin Bossert.
After the first presentation of the dissertation project, both motivated me to write
this thesis as presented, and gave useful hints to other application fields.

Thanks to all of my former colleagues Dr. Oliver Gableske, Dr. Simon Straub, Dr.
Patrick Scharpfenecker, Dr. Dominikus Krüger, Dr. Timo Beller, Dr. Helmut Sedding,
Dr. Gunnar Völkl, Jan-Hendrik Lorenz, Bogdan Adrian Dina, Julian Nickerl, Florian
Wörz and Thomas Büchler. All of those people helped me to take things not too
serious, but also were proficient and very obliging conversation partners with
excellent tips. Moreover, thanks to our secretaries Waltraud Fromm and Christiane
Halder-Schnell for all of the support regarding bureaucracy, as well as for being
trustful contact persons when difficult situations occurred.

I am deeply grateful for all of the students that were involved in student projects
related to tunneling. Namely, I want to thank Abdul-Kadir Dede, Caroline Räther,
Lisa Arnold, Matthias Koch, Pascal Weber, Sebastian Reyes Häusler, Valentin Reyes

vii

Häusler and Christian Sabisch. Despite the non-trivial projects, all of them decided
to carry out the projects. I explicitly want to to state that all of the projects had
influence on this work. I hope that noone regrets his decision for a tunneling project,
and wish them the best for their future.

Special thanks go to my language readers Kate Wolf, Matthias Gerber and Ralf
Wörner. They gave me useful tips to compensate my weaknesses in English grammar
and spelling, making this thesis more understandable and therethrough accessible
to a broader group of persons.

Finally, I want to thank my parents, my brother and sister-in-law as well as my
friends Dominik Walter, Michael Schmid, Patrick Mack and Christoph Braunsteffer.
Not only that they motivated me when necessary, they also helped me to keep a
clear head during the COVID-19 pandemic.

Uwe Baier
Ulm, July 23, 2020

viii

C O N T E N T S

1 I N T R O D U C T I O N 1

2 P R I N C I P L E S 9
2.1 Suffix array and Burrows-Wheeler-Transform 10

2.1.1 Burrows-Wheeler-Transform 11
2.1.2 Retransformation 15
2.1.3 Backward search 16

2.2 Block-sorting compression 18
2.2.1 Source encoding 18
2.2.2 Run-length encoding 22
2.2.3 Move-to-front transform 23
2.2.4 Block-sorting compression 25

2.3 Wavelet trees, rank, select and balanced parentheses 27
2.3.1 Rank 27
2.3.2 Select 29
2.3.3 Wavelet trees 30
2.3.4 Balanced parentheses sequences 35

2.4 Wheeler graphs 38
2.4.1 De Bruijn graphs 40
2.4.2 Tries 42
2.4.3 Succinct graph representation 44

3 T U N N E L I N G T H E O R Y 49
3.1 Prefix intervals 50
3.2 Tunneling 54

3.2.1 Tunneled BWT computation 56
3.2.2 Backward steps 59

3.3 Overlappings 62
3.4 Hardness of tunnel planning 66

3.4.1 Introduction to complexity classes 68
3.4.2 NP-completeness of Wheeler graph prefix interval cover 70
3.4.3 Additional notes on tunnel planning complexity 75

4 A P P L I C AT I O N I N D ATA C O M P R E S S I O N 79

ix

x C O N T E N T S

4.1 Run-terminated prefix intervals 80
4.1.1 Definition and properties 81
4.1.2 Computation 87
4.1.3 Tunnel encoding 92

4.2 Cost model 98
4.2.1 Definition 102
4.2.2 Validation 107

4.3 Tunnel planning strategies 109
4.3.1 Hirsch strategy 111
4.3.2 Greedy strategy 116

4.4 Experimental results 121

5 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S 127
5.1 De Bruijn graph edge reduction and tunneling 128
5.2 De Bruijn graph edge minimization 135

5.2.1 Incremental algorithm 139
5.2.2 Efficient incremental algorithm 146
5.2.3 Experimental results 149

5.3 Trie representation using the extended BWT 150
5.3.1 XBWT Construction 159
5.3.2 Experimental results 166

5.4 Trie tunneling 168
5.4.1 Tunneled XBWT introduction and trie traversal 169
5.4.2 Failure link support 172
5.4.3 Construction 178
5.4.4 Experimental results 185

6 C O N C L U S I O N 189

B I B L I O G R A P H Y 193

A T E S T D ATA D E S C R I P T I O N 203

B D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S 205
B.1 Compressor benchmark 205
B.2 Tunneling impact 212

C S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S 217
C.1 De Bruijn graph edge reduction 217
C.2 Trie results 222

C O N T E N T S xi

I N D E X 229

L I S T O F F I G U R E S

Figure 1.1 Prediction of the yearly electric energy needs of computer
and communications engineering in Germany. 3

Figure 1.2 BWT Excerpt from the first paragraph of the essay “Beant-
wortung der Frage: Was ist Aufklärung?” from Immanuel
Kant [Kan84]. 4

Figure 1.3 Wheeler Graph and tunneled Wheeler graph of the BWT
yeep$yaass. 5

Figure 1.4 Relative encoding size decrease achieved by tunneling. 6
Figure 1.5 Edge-reduced de Bruijn graphs with order k = 1, k = 2, k = 3

and k = 4 of the string S = AGTGGTGG$. 7
Figure 1.6 Trie and tunneled trie of the strings S1 = ACGA$, S2 = CGTGGA$

and S3 = AGTGG$. 7
Figure 2.1 Suffix array of the null-terminated string S = easypeasy$. 10
Figure 2.2 Correspondence of the BWT and the cyclically preceding

characters of sorted suffixes. 12
Figure 2.3 Illustration of a BWT backward search. 17
Figure 2.4 Source encoding illustration. 19
Figure 2.5 Examples of run-length encoding and move-to-front trans-

form. 24
Figure 2.6 Process chain of block-sorting compression. 25
Figure 2.7 BWT Excerpt from the first paragraph of the essay “Beant-

wortung der Frage: Was ist Aufklärung?” from Immanuel
Kant [Kan84]. 26

Figure 2.8 Example of a two-way rank computation. 28
Figure 2.9 Example of a two level block select structure. 29
Figure 2.10 Wavelet tree of the string S = yeep$yaass. 32
Figure 2.11 Tree topology representation using a balanced parentheses

sequence. 36
Figure 2.12 Balanced parentheses sequence of a prefix tree. 37
Figure 2.13 Suffix array, BWT and BWT Wheeler graph of the string S =

easypeasy$. 39

xiii

xiv L I S T O F F I G U R E S

Figure 2.14 Combined de Bruijn graph of order k = 2 and corresponding
Wheeler graph. 41

Figure 2.15 Trie and corresponding Wheeler graph. 43
Figure 2.16 Succinct representation of a Wheeler graph. 45
Figure 2.17 Connection between L and Dout as well as F and Din. 46
Figure 3.1 Wheeler graph, suffix array, longest common suffix array, pre-

fixes and sorted suffixes of the string S = easypeasy$. 51
Figure 3.2 Wheeler Graph of BWT yeep$yaass. 55
Figure 3.3 Systematic tunneling of a prefix interval. 57
Figure 3.4 Tunneling of adjacent prefix intervals produces a multigraph. 59
Figure 3.5 Emulated backward step. 61
Figure 3.6 Iterative tunneling of two overlapping prefix intervals. 62
Figure 3.7 Tunneling of a self-overlapping prefix interval. 65
Figure 3.8 Instance of the rectilinear picture rectangle cover problem. 71
Figure 3.9 Example of a rectilinear picture and its corresponding recti-

linear picture Wheeler graph. 73
Figure 3.10 Analogy between the rectilinear picture rectangle cover prob-

lem and the Wheeler graph prefix interval cover problem. 75
Figure 4.1 Integration of tunneling into the block-sorting compression

chain. 80
Figure 4.2 Examples of length-maximal run-terminated prefix inter-

vals. 82
Figure 4.3 Run-LF support for the BWT L of the string S = TCATCAGC$. 87
Figure 4.4 Encoding variants of a tunneled BWT with length-maximal

run-terminated prefix intervals. 93
Figure 4.5 Integration of tunneling into a BWT-based compressor. 99
Figure 4.6 Compressibility of a tunneled BWT using block-sorting com-

pression. 102
Figure 4.7 Expected structure of the aux-component and expected run-

length encoding of aux. 105
Figure 4.8 Huffman code for the characters in a run-length encoded

aux-component. 106
Figure 4.9 Discrepancy between estimated relative compressibility and

real relative compressibility in conjunction with tunneling. 108
Figure 4.10 Illustration of side effects of tunneling on the rating of prefix

intervals. 111

L I S T O F F I G U R E S xv

Figure 4.11 Optimality of the hirsch and greedy strategy in the bcm com-
pressor. 115

Figure 4.12 Effects of tunneling when overlapping prefix intervals are
considered. 119

Figure 4.13 Relative encoding size decrease achieved by tunneling. 122
Figure 4.14 Relative encoding size decrease achieved by tunneling for big

and repetitive files. 123
Figure 5.1 Connection between the de Bruijn graph and the BWT ma-

trix. 129
Figure 5.2 Normal and edge-reduced de Bruijn graphs with order k = 2

of the string S = AGTGGTGG$. 131
Figure 5.3 Analogy between an edge-reduced de Bruijn graph G̃2(S)

and a tunneled BWT. 132
Figure 5.4 Tunneling of all length-maximal k-mer prefix intervals. 135
Figure 5.5 Edge-reduced de Bruijn graphs with order k = 1, k = 2, k = 3

and k = 4 of the string S = AGTGGTGG$. 136
Figure 5.6 Dependence between the order k and the number of edges in

an edge-reduced de Bruijn graph. 139
Figure 5.7 De Bruijn graph node evolution steps. 139
Figure 5.8 Node evolution during the increase of the de Bruijn graph

order. 141
Figure 5.9 Example of an aging predecessorship. 145
Figure 5.10 Average amount of reduced edges for minimal edge-reduced

de Bruijn graphs. 150
Figure 5.11 Extended trie of the strings S1 = ACGA$, S2 = CGTGGA$ and

S3 = AGTGG$. 152
Figure 5.12 Extended trie and components of an extended BWT. 155
Figure 5.13 Components of XBWT construction. 160
Figure 5.14 Average space-time tradeoff of different trie construction al-

gorithms. 167
Figure 5.15 Comparison of the shape components of an XBWT and the

succinct representation of a Wheeler graph of the underlying
trie. 169

Figure 5.16 Tunneled XBWT shape components and an illustration of the
associated word graph. 170

Figure 5.17 Illustration of the isolation Lemma. 174

xvi L I S T O F F I G U R E S

Figure 5.18 Example of explicit and implicit failure links in a tunneled
XBWT. 176

Figure 5.19 Example of a full tunneled XBWT and its trie illustration. 178
Figure 5.20 Components required to construct a tunneled XBWT and

normal XBWT. 179
Figure 5.21 Average sizes of extended trie representations in bytes per

symbol. 186
Figure 5.22 Average speed of the multi-pattern search using the Aho-

Corasick algorithm compared to multiple single-pattern searches
for all patterns using the linux command grep. 187

Figure B.1 Optimality of the hirsch and greedy strategy with the bw94
post stages. 214

Figure B.2 Optimality of the hirsch and greedy strategy with the bcm
post stages. 215

Figure C.1 Dependence between the order k and the number of edges in
an edge-reduced de Bruijn graph. 218

Figure C.2 Amount of reduced edges for minimal edge-reduced de Bruijn
graphs. 219

Figure C.3 Construction timings of tunneled FM-index construction. 220
Figure C.4 Memory peak during tunneled FM index construction. 221
Figure C.5 Size of trie representations relative to the size of the sum of

lengths of all input strings. 223
Figure C.6 Trie construction timings of different algorithms relative to

FM-index construction. 224
Figure C.7 Memory peak during trie construction and excluding FM-

index construction. 225
Figure C.8 Speed of the multi-pattern search using the Aho-Corasick

algorithm compared to multiple single-pattern searches for
all patterns using grep. 226

L I S T O F T A B L E S

Table 4.1 Compression results for selected files. 124
Table A.1 Statistics about the used test data. 204
Table B.1 Used compressors in the compression benchmark. 206
Table B.2 Compression results in bits per symbol. 207
Table B.3 Compression speed in MB per second. 208
Table B.4 Decompression speed in MB per second. 209
Table B.5 Compression memory peak in bits per symbol. 210
Table B.6 Decompression memory peak in bits per symbol. 211
Table B.7 Tunneling compression improvements in percentage. 213
Table C.1 Statistics about the used trie test data. 222

xvii

L I S T O F A L G O R I T H M S

Algorithm 2.1 Retransformation of a BWT. 15
Algorithm 2.2 Backward search using a BWT and a suffix array. 17
Algorithm 2.3 Run-length encoding computation of a string S. 22
Algorithm 2.4 Move-to-front transformation. 23
Algorithm 2.5 Implementation of the getIntervals function. 35
Algorithm 3.1 Enumeration of all left-maximal height-maximal prefix inter-

vals. 53
Algorithm 3.2 Marking of columns from disjoint prefix intervals. 58
Algorithm 3.3 Tunneling of a BWT using the markings of prefix intervals. 59
Algorithm 3.4 Backward step in a tunneled BWT. 60
Algorithm 3.5 Backward step in a tunneled BWT with tunnel overlappings. 66
Algorithm 4.1 Computation of length-maximal run-terminated prefix inter-

vals. 89
Algorithm 4.2 Computation of a tunneled BWT encoding when only run-

terminated length-maximal prefix intervals are considered. 95
Algorithm 4.3 Transformation of a tunneled BWT encoding. 97
Algorithm 4.4 Computation of the length-maximal run-terminated prefix

interval rating array. 101
Algorithm 4.5 Hirsch tunnel planning strategy. 114
Algorithm 4.6 Greedy tunnel planning strategy. 116
Algorithm 4.7 Greedy tunnel planning strategy with updates. 118
Algorithm 5.1 Computation of the k-mer interval boundaries bit-vector. 133
Algorithm 5.2 Unmarking of invalid prefix intervals. 134
Algorithm 5.3 Naive de Bruijn graph edge minimization algorithm. 137
Algorithm 5.4 Incremental de Bruijn graph edge minimization algorithm. 142
Algorithm 5.5 Efficient incremental de Bruijn graph edge minimization al-

gorithm. 148
Algorithm 5.6 Aho-Corasick algorithm for exact multi-string matching using

an extended trie. 153
Algorithm 5.7 Aho-Corasick algorithm using an XBWT. 156

xix

xx List of Algorithms

Algorithm 5.8 Reporting of all occurrences of patterns during the Aho-
Corasick algorithm. 158

Algorithm 5.9 Construction of the bit-vector MR and the counter array cntc. 161
Algorithm 5.10 Construction of the XBWT components LX and Dout. 162
Algorithm 5.11 Construction of the XBWT component P. 163
Algorithm 5.12 Computation of the XBWT record array R. 164
Algorithm 5.13 Child navigation in a tunneled XBWT with non-overlapping

tunnels. 171
Algorithm 5.14 Failure link navigation in a tunneled XBWT with tunnels from

k-mer prefix intervals. 177
Algorithm 5.15 Computation of a k-mer prefix interval marking suitable for

XBWT tunneling. 181
Algorithm 5.16 Construction of the tunneled XBWT components L̃X, D̃out and

D̃in. 182
Algorithm 5.17 Construction of the tunneled XBWT component P̃ using the

components MR and cntc. 184

1
I N T R O D U C T I O N

Data compression is an indispensable component of modern data communication
and storage. When given some data, the task of data compression is to compute a
representation of the data which needs less space than the plain data itself. Addition-
ally, the representation must be decompressible, i.e. it must be possible to compute
the original data, or data which is similar to the original data.

One can distinguish two types of data compression: lossless and lossy. Lossy data
compression typically appears within human-readable media like audio, images
and video. In these cases, it is not important to precisely recover the original data.
For recognition, the human senses do not need the original data in detail as long as
the recovered data is close enough to the original data. To give a concrete example,
say we want to compress an image with a resolution of e.g. 720 · 480 pixels. Then,
during decompression, it could be the case that the color values of some pixels differ
from that of the pixels in the original image. The human eye is unlikely to recognize
a difference between both images given that only a few pixels are modified.

The loss in the quality allows for the compression of the image. Lossy compression
is essential if the data is too big to be processed normally. The following example
from a lecture slide of Henning Fernau [Fer13, lecture 1, slide 5] underlines this
“need” for data compression. Say we want to record a video with a resolution of
720 · 480 pixels. We use 2 bytes per pixel to encode the color values, and want to
record 30 frames per second. The video should have a length of 2 hours. Then, the
size of the uncompressed video can be computed as follows:

720 · 480 pixels = 345600 pixels per image (ppi)

345600 ppi · 2 bytes per pixel = 691200 bytes per image (Bpi)

691200 Bpi · 30 frames per second = 20736000 bytes per second (Bps)

20736000 Bps · 7200 seconds = 142383 MB ≈ 139 GB.

1

2 I N T R O D U C T I O N

Currently, we would consider this quality very low, as the full HDTV standard uses
a resolution of 1920 · 1080 pixels per frame and 3.75 bytes per pixel [Shi11]. With the
HDTV resolution, the video size would increase by the factor 1920·1080

720·480 ·
3.75

2 = 11.25,
so that the final size would be about 1563.75 GB, not including audio. Thus, one
would need a 2 TB hard drive to store the video. Additionally, to play the video, a
data process rate of 1563.75 GB

7200 s ≈ 1800 Mbit/s would be needed. In the first quarter
of 2017, the average peak connection speed of the internet in Germany was about
65.6 Mbit/s [Bel17b]. Thus, streaming services would have been an illusion before
2017, and still would not be available in 2020.

An other type of data compression is lossless data compression. Lossless data
compression compresses data and fully recovers the original data. It should be noted
that it is not always possible to compress data in a lossless way. If this would be
possible, one could recursively compress the compressed representant and thereby
obtain a representation using only 1 bit. This would imply that any message would
consist of only 1 bit of information content and could not reflect the situation when
the underlying alphabet has a size of more than two characters. Lossless data com-
pression is used for pure data transmission in, e.g., download servers or for archiving
files. Particular interest is given to this type of compression with the new age of “big
data”.

For example, the goal of the 1000 Genomes Project [Res15] was to sequence and
assemble 1000 human genomes. Each human genome is made-up of an alphabet of 4
different base pairs and consists of about 3 billion base pairs. Using a naive approach
and encoding each base pair with 2 bits, a human genome requires about 715 MB of
space. The 1000 genomes project was successfully finished in 2015, producing about
715 GB of data, not including additional labels. In 2019, another genome project
called the 100000 Genomes project [Gen] had finished data collection. As human
genomes are 99.8% the same, a huge potential of data compression exists.

The age of “big data” also inspired a new research trend: computation on com-
pressed data. The idea is that one does not decompress data before it is processed.
Instead, the processing works directly on the compressed data. This saves the time
and memory needed to decompress the data. In some cases, computation on com-
pressed data is even faster than the same computation on the raw data.

Finally, data compression offers an economic potential. With increasing inter-
net usage, the amount of data transmission and computation increases. This leads
to more energy costs for both transmission and computation, see Figure 1.1. Al-
though modern computer systems are becoming more and more energy efficient, the

I N T R O D U C T I O N 3

10,5 12,0 14,3 16,4

6,5 6,0
7,1

8,69,6 8,0
6,4

5,5

28,9

21,2 15,4
13,1

1,5 2,00

10

20

30

40

50

60

2010 2015 2020 2025

building supply
public
household
workplace IT
telecommunication
data centers

ye
ar

ly
 e

le
ct

ric
 e

ne
rg

y
ne

ed
s

[T
W

h/
a]

Figure 1.1: Prediction of the yearly electric energy needs of computer and communications
engineering in Germany, measured in terawatt hours. The prediction comes
from a study on behalf of the “Bundesministeriums für Wirtschaft und Energie”
which was presented in 2015 [Sto+15]. In 2015, computer and communications
engineering required about 9.3 percentage of the entire German electric power
consumption. The (translated) image comes from the brief description of the
study which is available at https://www.bmwi.de/Redaktion/DE/Downloads/E/
entwicklung-des-ikt-bedingten-strombedarfs-in-deutschland-kurzfassung.

pdf (last visited June 2020) with allowance for publication by the first author of
the study, Dr. Lutz Stobbe.

amount of energy required in data centers and data transmission is still increasing.
Consequently, developing better compression methods can help to save resources.

Lossless data compression has been introduced by the “father of information the-
ory”, Claude E. Shannon in 1948 [Sha48]. Since then, a lot of different methods have
been introduced, e.g. source encoding methods from David A. Huffman [Huf52],
dictionary-based approaches from Abraham Lempel and Jacob Ziv [ZL77; ZL78],
context mixing methods using gradient descent or neuronal networks from Matthew
V. Mahoney [Mah05] or text permutation methods from Michael Burrows and David
J. Wheeler [BW94].

https://www.bmwi.de/Redaktion/DE/Downloads/E/entwicklung-des-ikt-bedingten-strombedarfs-in-deutschland-kurzfassung.pdf
https://www.bmwi.de/Redaktion/DE/Downloads/E/entwicklung-des-ikt-bedingten-strombedarfs-in-deutschland-kurzfassung.pdf
https://www.bmwi.de/Redaktion/DE/Downloads/E/entwicklung-des-ikt-bedingten-strombedarfs-in-deutschland-kurzfassung.pdf

4 I N T R O D U C T I O N

i L[i] S[SA[i]..SA[i] + 60]
...

...
...

426 i st also der Wahlspruch der Aufklärung.

427 i st das Unvermögen, sich seines Verstandes ohne Leitung eines

428 i st der Ausgang des Menschen aus seiner selbst verschuldeten U

429 i st diese Unmündigkeit, wenn die Ursache derselben nicht am Ma

430 b st verschuldeten Unmündigkeit. Unmündigkeit ist das Unvermöge

431 r standes ohne Leitung eines anderen zu bedienen. Selbstverschu

432 r standes zu bedienen! ist also der Wahlspruch der Aufklärung.

433 r standes, sondern der Entschließung und des Mutes liegt, sich

434 b stverschuldet ist diese Unmündigkeit, wenn die Ursache dersel
...

...
...

Figure 1.2: Excerpt from the BWT and the sorted suffixes from the first paragraph of the
essay “Beantwortung der Frage: Was ist Aufklärung?” from Immanuel Kant
[Kan84]. Each suffix prefixed by sta is preceded by the character r, suffixes
prefixed by st strongly tend to be preceded by the characters i, r and b.

In this thesis, we will present advantages on lossless data compression that uses
the Burrows-Wheeler transform (BWT). In Chapter 2, basics of the BWT, data com-
pression and sequence analysis will be discussed. To show the working principle of
the BWT, we give an example in Figure 1.2. The BWT is constructed by first sorting
all suffixes of a given text lexicographically. Afterwards, the BWT can be obtained
by concatenating the (cyclically) preceding characters of the sorted suffixes.

As Figure 1.2 shows, this has the effect of character clustering in the BWT, making
the BWT compressible. Methods to compress this clustered string will be discussed
in Chapter 2. Furthermore, this chapter explains how the transformation can be
inverted and why the BWT is so useful in both data compression and sequence
analysis.

We use this as basis to discuss a technique called tunneling in Chapter 3. Tunneling
has been invented by the author of this thesis. It allows one to reduce the length of a
BWT when lexicographically adjacent suffixes are preceded by identical strings.

The key idea is to view a BWT as a Wheeler graph. Wheeler graphs are general-
izations of a normal BWT and can be understood as a graphical representation of a
BWT. Each node contains one outgoing edge labeled with the BWT character of the
entry pointing to the node that is reached by a backward step (see Chapter 2 and 3).
The idea of tunneling will then be to fuse parallel equally-labeled paths (a so-called
prefix interval) into one single path, see Figure 1.3.

I N T R O D U C T I O N 5

1
y

2
e

3
e

4
p

5$

6
y

7
a

8
a

9
s

10
s

9

10

7

8

2

3

4

5

y

y

s

s

a

a

e

e

p

$

y

y

s a e
p

$

1
y

2
e

3

4
y

5
a

6
s

$
p

Figure 1.3: Wheeler Graph of BWT yeep$yaass (left) with prefix interval
(9, 7, 2, 4), (10, 8, 3, 5) colored blue. Tunneling of the prefix interval inside
the graph (center), tunneled Wheeler graph (right). This image was already
published in [BD19] © 2019 IEEE.

A consequence of the fusions is that the number of edges in the Wheeler graph is
reduced. This also reduces the length of the succinct representation of the graph.

In addition to the presentation of tunneling, Chapter 3 introduces a theory of
overlapping prefix intervals. Moreover, the chapter gives complexity results on the
hardness of tunnel planning, showing that tunnel planning is a hard problem.

Chapter 4 relies on tunneling to improve the compression rates of BWT-based data
compressors. To this end, the special class of length-maximal run-terminated prefix
intervals is introduced. This special class is characterized by fast prefix interval
computation. Moreover, the succinct representation of a tunneled Wheeler graph
can be compacted.

The remaining contents of Chapter 4 present how BWT-based compressors can
be enhanced with tunneling. First, a cost model is introduced which allows one to
rate prefix intervals according to their influence on the compression rate when being
tunneled. This cost model then allows one to develop heuristics for the problem of
deciding which prefix intervals should be tunneled.

Chapter 4 also contains experimental results on the impact of tunneling to the
compression rates of BWT-based compressors. Two BWT-based compressors are
enhanced with tunneling. As the experiments show, tunneling is able to improve the
compression rates of the compressors by about 9% on average. The best results of
tunneling are achieved when the data being compressed is large or very repetitive,
see Figure 1.4. As a result, tunneling makes BWT-based compressors competitive to
state-of-the-art compressors.

6 I N T R O D U C T I O N

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

bcm-t-gupdate

bw94-t-gupdate

bcm-t-greedy

bw94-t-greedy

bcm-t-hirsch

bw94-t-hirsch

26.77

21.47

28.51

22.57

27.48

22

Relative encoding size decrease achieved by tunneling (pizzachili & repetitive corpus)

Figure 1.4: Boxplot of the relative encoding size decrease achieved by tunneling. The boxplot
uses the results of files from the pizzachili and repetitive text corpus, see Chapter
A. The blue boxes indicate tunneling in conjunction with the bw94 compressor,
red boxes indicate tunneling in conjunction with bcm. The box plots consist of
minimum (left whisker), lower quartil, median and upper quartil (boxes) and
maximum (right whisker). The green lines indicate the average encoding size
decrease. A similar image was already published in [BD19] © 2019 IEEE.

Chapter 5 presents tunneling applications in sequence analysis. First, the chapter
shows an approach to find a non-overlapping prefix interval collection using de
Bruijn graphs. A de Bruijn graph is a graphical representation of a string obtained by
representing each length-k substring of the original sequence as a node. Two nodes
are connected when their node labels overlap by k − 1 characters in the original
string. This produces a multi-graph as two length-k substrings can overlap multiple
times in a string.

Then, a new compression scheme of these graphs is shown. Every time when a
node x is the only predecessor of a node y, and y is the only successor of x, all edges
between x and y can be fused to just one edge. This reduces the amount of edges
in the de Bruijn graph and induces a tunneling strategy where the length of the
tunneled BWT can be reduced by the same amount.

To minimize the length of tunneled BWTs in this way, the de Bruijn graph edge
minimization problem is formulated. The problem asks for the order k such that the
edge-reduced de Bruijn graph has the minimal amount of edges, see Figure 1.5. We
also provide an efficient algorithm to solve the problem. As experiments show, it is
possible to reduce the amount of edges by about 80% in repetitive files. This allows
for good tunneling compression of text indices when the data is repetitive.

The second part of Chapter 5 addresses tries. A trie is a tree-based data structure
to represent a dictionary of strings. In 2005, Ferragina et al. presented a succinct
representation of tries using the BWT, called extended BWT [Fer+05]. This XBWT
is the smallest trie representation to date. In Chapter 5, we will present fast XBWT

I N T R O D U C T I O N 7

A

$

G

T

$A AG GT TG GG G$

$AG AGT GTG TGG GG$ G$A

GGT

$AGT AGTG GTGG TGGT GGTG

TGG$ GG$A G$AG

Figure 1.5: Edge-reduced de Bruijn graphs with order k = 1 (left), k = 2 (top right), k = 3
(middle right) and k = 4 (bottom right) of the string S = AGTGGTGG$. Fused edges
are indicated by red arrows, the de Bruijn graph with order k = 2 contains the
least edges, namely 9− 2 = 7 edges. A similar image was already published in
[Bai+20] © 2020 IEEE.

construction algorithms. Moreover, by using succinct counters [CAB19] for the con-
struction, we were able to decrease the required memory peak during construction
while maintaining the same construction speed.

Afterwards, it is shown how an XBWT can be tunneled. As an XBWT can be
expressed as a Wheeler graph, it is not surprising that trie tunneling is possible.
However, a key component of tries, the so called failure links, can be retained with
the special tunneling strategy of de Bruijn graphs. Therefore, a tunneled XBWT is
suitable to perform efficient multi-pattern searches using the Aho-Corasick algorithm

A C

C G
G

G T T

A G G

$ G G

$ A

$

A C

C G
G

G
T T

A G

$ G
$ A

$

Figure 1.6: Trie (left) and tunneled trie (right) of the strings S1 = ACGA$, S2 = CGTGGA$ and
S3 = AGTGG$. Both tries are illustrations of a normal and a tunneled XBWT that
include failure links.

8 I N T R O D U C T I O N

[AC75]. This is useful for real-world applications like Intrusion Detection Systems
which are used to classify incoming messages into malicious and harmless ones.
Typically, these systems contain a large dictionary of suspicious strings, and try to
classify a message depending on the occurrences of these suspicious strings. As the
dictionary can get very large, both fast multi-pattern searches as well as dictionary
compression are favored [Nor06].

Trie tunneling can be visualized as a conversion from a tree structure to a directed
word graph structure, see Figure 1.6. This makes the tunneling of an XBWT inter-
esting in theory. Moreover, XBWT tunneling is able to decrease the XBWT size by
up to 60% in the best cases while leaving the multi-pattern search speed almost
unchanged.

Finally, in Chapter 6, we will give concluding remarks, state some open problems
and make suggestions for future work.

2
P R I N C I P L E S

This chapter contains basic notations and definitions used in this thesis. We start
with some basic notations about strings and lexicographic order. Throughout this
thesis, any interval [i, j] is meant to be an interval over the natural numbers, every
logarithm is of base 2, and indices start with 1, except when stated differently.

A string S is a finite sequence of letters from an ordered alphabet Σ . We call S
null-terminated if S ends with the lowest ordered character $ ∈ Σ occurring only
once at the end of S, denote by σ the size of the alphabet Σ and by n := |S| the length
of the string S. The empty string with length 0 is denoted by ε.

Let S and T be two strings of length n and m, let i, j ∈ [1, n] be two integers and
let c ∈ Σ be some character. We denote by

• S[i] the i-th character in S.

• S[i..j] the substring of S starting at the i-th and ending at the j-th position.
Additionally, we define S[i..j] = ε if i > j.

• S[i..n] the i-th suffix of S.

• S <lex T if S is lexicographically smaller than T, that is, S is a proper prefix of T
(n < m and S = T[1..m]) or there exists a k ∈ [1, min{n, m}] with S[1..k− 1] =
T[1..k− 1] and S[k] < T[k].

• rankS(c, i) the number of occurrences of character c in the string S[1..i], that is,
rankS(c, i) := |{ k ∈ [1, i] | S[k] = c }|.

• selectS(c, i) the position of the i-th occurrence of character c in S (i ≤ rankS(c, n)),
that is, selectS(c, i) := min{ k ∈ [1, n] | rankS(c, k) ≥ i }.

• CS[c] the number of characters which are lexicographically smaller than c in S,
that is, CS[c] := |{ k ∈ [1, n] | S[k] < c }|.

• SR := S[n]S[n− 1]..S[1] the reverse of the string S.

• ci := c..c︸︷︷︸
i times

the i-fold repetition of the character c.

9

10 P R I N C I P L E S

2.1 S U F F I X A R R AY A N D B U R R O W S - W H E E L E R - T R A N S F O R M

The suffix array is a very popular data structure in the field of sequence analysis.
Presented in 1993 by Manber & Myers [MM93], the suffix array is a compact (al-
though sometimes limited) alternative to the suffix tree [Wei73]. The suffix array can,
however, be enhanced to offer the same functionality as a normal suffix tree, using
less space [AKO04].

The suffix array can be obtained by sorting all suffixes of a given string lexico-
graphically. The suffix array then stores the start positions of these sorted suffixes in
an array.

Definition 2.1 (Suffix array). Let S be a string of length n. The suffix array SA of S is
a permutation of integers in the range [1, n] such that

S[SA[1]..n] <lex S[SA[2]..n] <lex · · · <lex S[SA[n]..n].

An example of a suffix array can be found in Figure 2.1. Suffix array construction
in general is a non-trivial task. There are several linear-time algorithms for suffix
array construction [Kim+03; KS03; KA03; HSS03; Na05; Bai16], but for practical
applications, several non-linear-time algorithms [Mor03; FK17] have turned out to
be much faster.

A popular application of the suffix array is given in the so-called exact string
matching problem. Given a string S of length n and a pattern P of length m, one

i SA[i] S[SA[i]..n]
1 10 $
2 7 asy$
3 2 asypeasy$
4 6 easy$
5 1 easypeasy$
6 5 peasy$
7 8 sy$
8 3 sypeasy$
9 9 y$
10 4 ypeasy$

Figure 2.1: Suffix array of the null-terminated string S = easypeasy$. The blue-colored
rectangle in the suffixes indicates the eas-interval which starts at index 4 and
ends at index 5. Thus, the string eas occurs at the positions SA[4] = 6 and
SA[5] = 1 in S.

2.1 S U F F I X A R R AY A N D B U R R O W S - W H E E L E R - T R A N S F O R M 11

wants to find all positions i ∈ [1, n−m + 1] where the pattern P is contained in S,
that is, S[i..i + m− 1] = P. There exist several algorithms to solve the problem. A
popular one is the Knuth-Morris-Pratt algorithm [KMP77], able to determine all of
these positions in a run-time of O(n + m). Given a suffix array and the text S, by
performing a modified binary search on the suffix array, it is possible to determine
all suffixes being prefixed by P in O(m log n) time, see [MM93] for details. Because
of the lexicographic sorting, all of the suffixes form an interval in the suffix array.
This interval, called an ω-interval in general, spans over all lexicographically sorted
suffixes which are prefixed by the string ω, see Figure 2.1 for an example. Now,
given a P-interval [i, j], we can enumerate all positions where pattern P occurs by
printing the values SA[i], SA[i + 1], . . . , SA[j]. Thus, if a suffix array is given, the exact
string matching problem requires O(m log n + occ) time, where occ is the number of
occurrences of P in S. Using some additional precomputed information, the run-time
can be improved to O(m + log n + occ), see [Ohl13] for more details. This is clearly
superior to the run-time of the Knuth-Morris-Pratt algorithm, but one should note
that the time for the suffix array construction, as well as space for the suffix array, is
not included. Therefore, in the case of a single string search, the Knuth-Morris-Pratt
algorithm is still preferable to the suffix array approach.

2.1.1 Burrows-Wheeler-Transform

The Burrows-Wheeler-Transform is a famous text transformation and also the foun-
dation of this thesis. Originally presented by Mike Burrows and David J. Wheeler
in 1994 for the purpose of data compression [BW94], the transformation became
very popular in sequence analysis. Examples of usage include the data compression
program bzip2 [Sew96], a very efficient text index named FM-index [FM05] or the
program BWA which is used to align DNA-subsequences against a reference genome
[LD10]. Due to the importance of the Burrows-Wheeler-Transform (BWT) for this
work, we will review the application of the BWT in data compression in Section 2.2
and its application in text indexing in Section 2.3.

The idea of the BWT is closely related to the idea of a suffix array: given a string
S of length n, one sorts the cyclic rotations of S lexicographically. The BWT is then
obtained by collecting the last character of each sorted cyclic rotation from top to
bottom.

12 P R I N C I P L E S

Rotations F L

easypeasy$
asypeasy$e
sypeasy$ea
ypeasy$eas
peasy$easy
easy$easyp
asy$easype
sy$easypea
y$easypeas
$easypeasy

$ easypeas y
a sy$easyp e
a sypeasy$ e
e asy$easyp
e asypeasy $
p easy$eas y
s y$easype a
s ypeasy$e a
y $easypea s
y peasy$ea s

sort

i L[i] S[SA[i]..n]
1 y $
2 e asy$
3 e asypeasy$
4 p easy$
5 $ easypeasy$
6 y peasy$
7 a sy$
8 a sypeasy$
9 s y$
10 s ypeasy$

Figure 2.2: BWT construction of the string S = easypeasy$ (left), correspondence of the BWT
and the cyclically preceding characters of sorted suffixes (right). The F column
corresponds to the first characters of the sorted suffixes, that is, F[i] = S[SA[i]].

Definition 2.2 (Burrows-Wheeler-Transform). Let S be a string of length n. The
Burrows-Wheeler-Transform of S can be constructed as follows:

1. Build a conceptional matrix M′ whose rows correspond to the cyclic rotations
S[1..n], S[2..n]S[1], . . . , S[n]S[1..n− 1] of S.

2. Compute the matrix M by sorting the rows of M′ lexicographically.

3. The last column of M, denoted by L, corresponds to the BWT. Furthermore, the
first column of M is denoted by F.

An example of a BWT construction is shown in Figure 2.2. Definition 2.2 does
not directly give the full impression about the BWT. A simpler explanation may be
as follows: given the sorted rotations matrix M, the BWT consists of the cyclically
preceding characters of the rows of M. This holds true because characters in the last
column of M are the cyclically preceding characters of the corresponding rows. To
clarify this point, we want to give a connection between a BWT and the suffix array.

Lemma 2.3. Let S be a null-terminated string of length n, let SA be its suffix array and L be
its BWT. For each position i ∈ [1, n], the following correspondence between SA and L holds:

L[i] =

S[SA[i]− 1] , if SA[i] 6= 1

$, else

Proof. Because S is null-terminated, no suffix can be a proper prefix of another suffix
in S. Therefore, the lexicographic order of suffixes corresponds to the lexicographic

2.1 S U F F I X A R R AY A N D B U R R O W S - W H E E L E R - T R A N S F O R M 13

order of cyclic rotations of S. The proof is concluded by the fact that the last character
of a cyclic rotation corresponds to the cyclically preceding character of the rotation,
and $ is the last character in S.

By interpreting Lemma 2.3, it is clear that the BWT consists of the cyclically
preceding characters of sorted suffixes, at least for null-terminated strings.1 However,
commonly strings are null-terminated (or we might just append such a character),
so normally we can assume that Lemma 2.3 holds true. Additionally, Lemma 2.3
gives us an efficient procedure to compute a BWT: first, compute the suffix array.
Then, scan the suffix array from left to right, and apply the case distinction from the
lemma to determine the BWT entry. This results in a simple O(n) BWT construction
algorithm.

Given a BWT, it is unclear how the original string S can be reconstructed. To this
end, our next goal is to introduce the so-called LF-mapping, allowing one to jump
from a sorted rotation to the rotation which is shifted one position rightwards.

Definition 2.4 (LF-mapping). Let S be a string of length n, let M be the BWT matrix
of S with the first column F and the last column L. The LF-mapping is a permutation
in the range [1, n] defined as follows:

LF[i] := CL[L[i]] + rankL(L[i], i)

We write LFx[i] for the x-fold application of LF, i.e. LFx[i] := LF[LF[· · · LF[︸ ︷︷ ︸
x times

i] · · ·]],
define LF0[i] := i and the inverse2 of LF as LF−1.
Analogously, we write LF−x[i] for the x-fold application of the inverse of LF.

As indicated above, the LF-mapping allows one to navigate from a rotation to
the rotation obtained by shifting the rotation one position rightwards. Analogously,
in the case of a null-terminated string S, the LF-mapping leads from a suffix to the
suffix which is one character longer. Therefore, following the LF-mapping one step
typically is also called a backward step. As an example, consider position 8 in Figure
2.2 with the suffix S[SA[8]..10] = sypeasy$. Following the LF-mapping then leads to
position LF[8] = 3 with S[SA[LF[8]]..10] = asypeasy$. The following lemma clarifies
this connection.

1 In non-null-terminated strings, this need not to be true. It is left to the reader to verify the inequality
using the string S = baa. In case of non-null-terminated strings, the BWT is enhanced with the row
index of the original string S in the matrix M. This index is called the BWT index.

2 The inverse LF-mapping is also referred to as ψ-array.

14 P R I N C I P L E S

Lemma 2.5. Let S be a string of length n, let M be the BWT matrix of S with LF-mapping
LF and let i ∈ [1, n] be an integer. Let r = Mi be the i-th row of M. Then, the matrix row
MLF[i] corresponds to the rotation that is obtained by shifting r to the right, that is,

MLF[i] = r[n]r[1..n− 1]

Additionally, in the case that S is null-terminated, the following connection of LF and the
suffix array SA holds:

SA[LF[i]] =

SA[i]− 1 , if SA[i] 6= 1

n , else

Proof. Because L is the last column of M, by the definition of the LF-mapping,
CL[L[i]] ≤ LF[i] < CL[L[i] + 1] must hold. Consequently, as F corresponds to the
sorted characters of the underlying string S, MLF[i][1] = L[i] = r[n] must hold. As M
contains the lexicographically sorted rows of S, starting from the row Mi, M contains
exactly rankL(L[i], i)− 1 rows which are lexicographically smaller than r and end
with the character L[i]. When we shift each such row one character rightwards,
the lexicographic order of the new rows reflects the lexicographic order of the
unshifted rows: As each such row ends with the same character L[i], removing this
last character does not change the lexicographic order. Afterwards, appending the
same character L[i] at the front of each shortened row also will not change this
lexicographic order. Therefore, the row MLF[i] indicates the row obtained by shifting
the lexicographically rankL(L[i], i)-th row of M that ends with character L[i] one
position rightwards, which indicates row r. Therefore, MLF[i] = r[n]r[1..n− 1] must
hold.

The connection between SA and LF in case of a null-terminated string S then
automatically follows by the equivalence of sorted rotations in M and sorted suffixes
in SA.

The definition of the LF-mapping as the sum of smaller characters and identical
characters positioned above seems a bit cryptic. However, there is a much simpler
explanation of the mapping, also giving the mapping its name. The LF-mapping
describes a correspondence between the characters in L and F, which is as follows: the
k-th occurrence of a character c in L corresponds to the k-th occurrence of character c
in F. For example, have a look at the suffix y$ at position 9 in the suffix array from

2.1 S U F F I X A R R AY A N D B U R R O W S - W H E E L E R - T R A N S F O R M 15

Figure 2.2. The preceding character L[9] = s is the first occurrence of an s in L and
corresponds to the first s in the F-column (or equivalently, the leftmost character of
each sorted suffix), which in our example is given by position 7. Consequently, the
suffix at position 7 is the left-extension of y$ with the preceding character s.

2.1.2 Retransformation

So far, we have introduced the BWT and the LF-mapping. The attentive reader might
have noticed that the BWT is a text transformation, but details about a retransfor-
mation are currently missing. To this end, we will provide an algorithm which is
able to do such a retransformation. The basic idea is to traverse the BWT using the
LF-mapping and thereby pick up the characters in the BWT. As the LF-mapping
corresponds to a backward step, this will produce the reverse of the original string,
which can then be reversed to yield the original string back. Algorithm 2.1 shows
the full retransform procedure.

We will briefly explain some details about Algorithm 2.1. The first part of the
algorithm (lines 1–8) computes the C-array of L and is a combination of counting
occurrences and performing a prefix sum computation. The second part (lines 9–12)
computes the LF-mapping by scanning the BWT from left to right and incrementing

Data: BWT L of a null-terminated string S of length n over alphabet Σ.
Result: String S.

// compute C-array
1 let C be an array of size σ initialized with zeros
2 for i← 1 to n do
3 C[L[i]]← C[L[i]] + 1

4 sum← 0
5 for i← 1 to σ do
6 cnt← C[i]
7 C[i]← sum
8 sum← sum + cnt

// compute LF-mapping
9 let LF be an array of size n

10 for i← 1 to n do
11 C[L[i]]← C[L[i]] + 1
12 LF[i]← C[L[i]]

// retransform BWT
13 let S be a string of length n
14 S[n]← $
15 j← 1
16 for i← n− 1 to 1 do
17 S[i] = L[j]
18 j← LF[j]

Algorithm 2.1: Retransformation of a BWT.

16 P R I N C I P L E S

the values of the C-array before setting an entry of LF[i]. This ensures that LF[i] is
set to CL[L[i]] + rankL(L[i], i) because of the incrementation of entries in the C-array.
Finally, the third part (lines 13–18) retransforms the BWT as discussed above, by
filling the string S from back to front. The algorithm obviously has a run-time of
O(n).

Note that Algorithm 2.1 requires the original string S to be null-terminated. The
reason is that one needs a starting point for the retransformation (line 15). In the
case of null-terminated strings it is clear that the suffix $ is the lexicographically
smallest and also shortest suffix. Therefore the uppermost position determines the
start position of the backward steps. In the case that the original string is not null-
terminated, removing line 14 of Algorithm 2.1 and performing n backward steps
will not suffice to reconstruct the original string: the algorithm would produce any
rotation of the original string, but not necessarily the correct original string. To this
end, in the case of non-null-terminated strings, an additional position (the BWT
index) must be stored to ensure that the backward steps start at the correct position.
Thus, in the case of non-null-terminated strings, the variable j is set to the BWT
index in line 15.

2.1.3 Backward search

The BWT is also useful for the before mentioned exact string matching problem
which asks for all occurrences of a pattern P in a string S. The key idea is that, given
a ω-interval [i, j] in the suffix array and a character c, the cω-interval [ĩ, j̃] can be
computed as follows:

ĩ← CL[c] + rankL(c, i− 1) + 1 j̃← CL[c] + rankL(c, j)

After computing the new boundaries, ĩ points to the lexicographically smallest suffix
which is prefixed by cω, while j̃ points to the lexicographically largest suffix prefixed
by cω. See Figure 2.3 for an example.

The string matching problem for a pattern P of length m can now be solved as
follows: start with the ε-interval [1, n] and iteratively refine the interval to the P[m]-
interval, the P[m − 1..m]-interval and so on, until the P-interval is known. Then,
using the suffix array similar to the approach from Page 10, all occurrences of the
pattern P can be enumerated by printing all suffix array entries in the P-interval. A
full description of one such backward search is given in Algorithm 2.2.

2.1 S U F F I X A R R AY A N D B U R R O W S - W H E E L E R - T R A N S F O R M 17

i L[i] S[SA[i]..n]
1 y $
2 e asy$
3 e asypeasy$
4 p easy$
5 $ easypeasy$
6 y peasy$
7 a sy$
8 a sypeasy$
9 s y$

10 s ypeasy$

L[i] S[SA[i]..n]
y $
e asy$
e asypeasy$
p easy$
$ easypeasy$
y peasy$
a sy$
a sypeasy$
s y$
s ypeasy$

L[i] S[SA[i]..n]
y $
e asy$
e asypeasy$
p easy$
$ easypeasy$
y peasy$
a sy$
a sypeasy$
s y$
s ypeasy$

Figure 2.3: Illustration of a BWT backward search with pattern P = eas. The ε-interval forms
the start of the search (left). After one step, The interval is refined to the s-interval
(middle). In the second step, the interval further is refined to the as-interval
(right). In the final step (which is not depicted here), the eas-interval [4, 5] is
determined.

Depending on the implementation of the rank-queries, the run-time of Algorithm
2.2 is bounded by O(m · time(rank) + occ), where m is the length of the pattern
and occ is the number of occurrences from P in S. Paolo Ferragina and Giovanni
Manzini were the inventors of the BWT-based backward search [FM05] and used a
couple of different structures to answer rank-queries efficiently. A possibility would
be to use a σ · n-sized table with precomputed rank values for each character and
position. This results in an optimal O(m + occ) algorithm for solving the exact string
matching problem, excluding the computation of the BWT, SA and the lookup table.
The drawback of such a table is its large space consumption. We will later present

Data: BWT L of a string S of length n with C-array CL, suffix array SA of S, pattern P of length m.
Result: All positions i ∈ [1, n−m + 1] such that S[i..i + m− 1] = P.

1 i← 1
2 j← n
3 for k← m to 1 do
4 c← P[k]
5 i← CL[c] + rankL(c, i− 1) + 1
6 j← CL[c] + rankL(c, j)

// stop if no candidates are left
7 if i > j then
8 return

9 print SA[i], SA[i + 1], · · · , SA[j]

Algorithm 2.2: Backward search for solving the exact string matching problem using a
BWT and a suffix array.

18 P R I N C I P L E S

another data structure called wavelet tree [GGV03], answering rank-queries and a
couple of other operations in O(log σ) run-time and low space consumption.

Summing this section up, we introduced the BWT as a reversible text transfor-
mation which is very useful for string operations such as exact pattern matching.
Note though that we have only touched the surface of possible BWT applications.
For example, the BWT also offers possibilities for approximative pattern matching
[LD10], data compression [BW94] or the succinct representation of string-based data
structures [GMS17]. The next section shows the historically oldest application of the
BWT in the field of data compression.

2.2 B L O C K - S O R T I N G C O M P R E S S I O N

After the introduction of the BWT, this section will show the first application for
which the BWT was developed: data compression. This knowledge is necessary to
enhance BWT-based compressors with the tunneling technique, as it will be shown in
Chapter 4. We will introduce some selected concepts from lossless data compression,
starting with the historically oldest one: source encoding.

2.2.1 Source encoding

The typical setting of source encoding is as follows: a sender wants to transmit a
sequence S of length n over an alphabet Σ to a receiver using as few bits as possible
due to a slow transmission line. Both sender and receiver have knowledge about the
character frequencies in the sequence S, that is, the function

f : Σ→N with f (c) := |{ i ∈ [1, n] | S[i] = c }|

is known to both sender and receiver. The task of source encoding is to develop a
code C f such that the binary representation C f (S) of S is as short as possible but still
allows the reconstruction of S. Expressed differently, the code C f must be invertible.
Figure 2.4 shows an example of such a setting.

There have been numerous attempts to develop optimal codes based on the
relative frequencies of characters in the underlying sequence. The first of such codes,
although not optimal, are known as Shannon coding [Sha48] and Shannon-Fano

2.2 B L O C K - S O R T I N G C O M P R E S S I O N 19

Sender

Receiver

S = ATTG

C f (S) = 00︸︷︷︸
A

1︸︷︷︸
T

1︸︷︷︸
T

01︸︷︷︸
G

S = ATTG

string S f (S) C f (S)
A 1 00

G 1 01

T 2 1

c1 · · · cn C f (c1) · · ·C f (cn)

Figure 2.4: Source encoding illustration. The left-hand side shows the transmission of an
encoded sequence. The right-hand side shows a dictionary of strings, frequencies
and their codes. The string S can be reconstructed using C f (S) because no code
word of a character is a prefix of another code word. Encoding the sequence as
shown above requires 6 bits, while a normal transmission would require 8 bits (2
bits per character). In general, characters with high frequency should be encoded
using short code words, while rare characters should be encoded using longer
code words.

coding [Fan49]. Later on, optimal codes were developed and are known as the very
popular Huffman coding [Huf52] as well as Arithmetic coding [RL79].

The term “optimal” here means that it is not possible to transmit the sequence S
with less bits than produced by the given code. To specify the optimality of a code
more precisely, we will next present a lower bound on the amount of information
which has to be transmitted to ensure that the source can be reconstructed. The
concept is called entropy and was developed by Claude E. Shannon in his famous
publication “A Mathematical Theory of Communication” [Sha48].

Definition 2.6 (Entropy). Let S be a string of length n over an alphabet Σ and
character frequency function f . The entropy H(S) is a lower bound for the average
number of bits required to transmit a character of S using any code C f , and is defined
as follows:

H(S) :=
1
n
·
(

log2(n!)− ∑
c∈Σ

log2(f (c)!)

)

Theorem 2.7. Let S be a string of length n with alphabet Σ and character frequency function
f . Then, any invertible code C f which allows the reconstruction of S from C f (S) using only
the frequency function f must satisfy

|C f (S)| ≥ n · H(S).

20 P R I N C I P L E S

Proof. Suppose there exists a code C f with |C f (S)| < n · H(S). As C f uses only the
frequency function f to reconstruct the string S, but has no further information about
the order of the characters, any string S̃ 6= S with equal character frequency function
f must use the same amount of bits to be encoded, that is, |C f (S)| = |C f (S̃)|. Thus,
such a code is able to represent less than

2n·H(S) = 2log2(n!)−∑c∈Σ log2(f (c)!) = 2log2(n!)−log2(∏c∈Σ f (c)) =
n!

∏c∈Σ f (c)!

different strings with character frequency function f .
Given a character frequency function f , strings with frequency function f may be

generated as follows: distribute the f (c1) occurrences of the first character over n
free places in S (there are (n

f (c1)
) possibilities to do so without producing two equal

strings). Then, distribute the f (c2) occurrences of the second character over the
remaining n− f (c1) free places in S ((n− f (c1)

f (c2)
) possibilities), and so on. So overall,

we are able to produce(
n

f (c1)

)
·
(

n− f (c1)

f (c2)

)
· . . . ·

(
n− f (c1)− · · · − f (cσ−1)

f (cσ)

)
=

n!
f (c1)!(n− f (c1))!

· (n− f (c1))!
f (c2)!(n− f (c1)− f (c2))!

· . . . ·
(n−∑σ−1

i=1 f (ci))!
f (cσ)!(n−∑σ

i=1 f (ci))!

=
n!

f (c1)! · f (c2)! · . . . f (cσ)!

of such strings. As the code C f is not able to represent that many strings, a string
S must exist which cannot be reproduced using C f . Therefore, C f is not invertible,
which is a contradiction.

In the original publication [Sha48], Shannon considered “information sources”
rather than finite sequences. In this setting, character frequencies are replaced by
character probabilities, so the length of the sequence to be encoded is unknown.
As we will show, both concepts coincide if we assume that the sequence is “large
enough”.

Remark 2.8. Let p1, . . . , pσ be the probabilities of occurrences of characters from an
alphabet Σ in a sequence S. The entropy of the information source then is defined as

H(p1, . . . , pσ) :=
σ

∑
i=1

pi · log2

(
1
pi

)
.

2.2 B L O C K - S O R T I N G C O M P R E S S I O N 21

The connection between the entropy of an information source and the entropy of
a sequence then is given as follows: For characters c1, . . . , cσ of a sequence S with
length n and character frequency function f , define pi := f (ci)

n . Then, using the
special form log2(n!) = n log2(n) − n log2(e) + O(log2(n)) of Stirling’s formula
[Sti30] and the identity ∑c∈Σ f (c) = n, the entropy of a sequence can be written as
follows:

H(S) =
1
n
·
(

log2(n!)− ∑
c∈Σ

log2(f (c)!)

)

=
1
n
· (n log2(n)− n log2(e) + O(log2(n))

− ∑
c∈Σ

f (c) log2(f (c))− f (c) log2(e) + O(log2(f (c))))

= ∑
c∈Σ

f (c)
n

log2

(
n

f (c)

)
+ O

(
log2(n)

n

)
− ∑

c∈Σ
O
(

log2(f (c))
n

)
= H(p1, . . . , pσ) + O

(
log2(n)

n

)
− ∑

c∈Σ
O
(

log2(f (c))
n

)

For a large n, the error terms O(
log2(n)

n) and ∑c∈Σ O(
log2(f (c))

n) converge to zero, so
for a large n, we can assume H(S) = H(p1, . . . , pσ). On the other hand, the entropy
of an information source is not always a lower bound for the average number of bits
per character needed to transmit a sequence S from a sender to a receiver.

Consider as a counter-example strings with frequency function f (A) = 1 and
f (B) = 1. The entropy of the information source is then given by H(1

2 , 1
2) = 2 ·

1
2 · log2(2) = 1. On the other hand, as the set of strings with frequency function f
is given precisely by AB and BA, the sender only needs to send a code for the first
character (1 bit), because it is automatically clear that the second character is the
opposite of the first one. Thus it is possible to design a code such that the transmitted
bits per character equals 1

2 , which is below the lower bound of the entropy of the
information source.

In the following, we will assume that a sequence can be encoded optimally. Ex-
pressed differently, we assume that a code C exists which has an average per-symbol
encoding length identical to the entropy. Although this is a hypothetical assumption3,
some methods exist that are very close to this goal, see e.g. [Huf52] or [RL79].

3 Real-world codes encode a sequence with a discrete number of bits while the information content
|S| · H(S) of a string S need not to be a natural number.

22 P R I N C I P L E S

An important rule of thumb for entropy is that the entropy is small when the
underlying character frequency function is skew. Skewness of a frequency function
here means that a small number of characters occur much more frequently than
the remaining characters do. Intuitively, if a frequency function is dominated by
just a few characters, it makes sense to encode these characters with short code
words, while rare characters should be encoded using longer code words, see Figure
2.4. This intuition is covered by the entropy: consider the extreme case where the
alphabet of the underlying sequence consists of only one letter. In that case, H(S) =
1
n · (log2(n!)− log2(n!)) = 0, so we need zero bits to transmit S. This makes sense
because S can be reconstructed using only the frequency function f by repeating the
single character according to its frequency. As a different case, consider a sequence
that consists of two characters occurring with equal frequency n

2 . In this case, the
entropy is H(S) = 1

n ·
(
log2(n!)− 2 · log2(

(n
2

)
!)
)
≈ 1

n ·
(
n log2(n)− n log2(

n
2)
)
= 1,

which indicates that each character must be transmitted using 1 bit, and so coincides
with the trivial code for sequences over an alphabet size of two.

2.2.2 Run-length encoding

Source coding is a compression technique that uses the character frequencies to
compress sequences. The compression rate of source encoding is independent of the
order in which the characters occur. We will next present a compression technique
which instead ignores character frequencies and makes use of the order in which
characters occur. More precisely, think of a heavily clustered sequence, that is, a
sequence where an occurrence of a character c strongly tends to be succeeded by the
same character c. An easy way to compress such a string is, given a subsequence
consisting of e.g. 1000 times character A, replace the sequence by a concatenation of
the letter A and the number 1000, known as run-length encoding.

1 rle(S)← ε
2 foreach run [i, j] ∈ R in ascending order do
3 append S[i] to rle(S)
4 for k← 1 to |binH(j− i + 1)| do
5 if binH(j− i + 1)[k] = 1 then
6 append 1rle to S

7 else
8 append 0rle to S

Algorithm 2.3: Run-length encoding computation of a string S.

2.2 B L O C K - S O R T I N G C O M P R E S S I O N 23

Definition 2.9 (Run-length encoding). Let S be a string of length n over an alphabet
Σ. A run of S is a non-empty interval [i, j] ⊆ [1, n] such that

• i = 1 or S[i] 6= S[i− 1].

• j = n or S[j] 6= S[j + 1].

• S[i] = S[i + 1] = . . . = S[j].

Denote byR := { [i, j] ⊆ [1, n] | [i, j] is a run of S } the set of all runs of S. Denote
by bin(i) the string corresponding to the binary representation of i with the highest
order bit on the left and the lowest ordered bit on the right. Furthermore, denote by
binH(i) the headless binary representation of i, that is, binH(i) := bin(i)[2..|bin(i)|].

The run-length encoded string rle(S) is generated using Algorithm 2.3. The c-run-
length encoded string rlec(S) is generated by replacing each [i, j]-run with S[i] = c
in S with a string over the alphabet Σrle = {0rle, 1rle} corresponding to the bit string
binH(j− i + 2).

The inverting of a run-length encoded string is straightforward: scan the string
for pairs of a character and a headless binary representation of some integer i, and
append the character i-times to S. An example of a run-length encoded string can be
found in Figure 2.5.

2.2.3 Move-to-front transform

Another method used to compress sequences is given by the move-to-front transform
[Rya80]. The idea of the transform is to replace a character S[i] by the number of
distinct characters seen since the last occurrence of the character S[i].

Definition 2.10 (Move-to-front transform). Let S be a sequence of length n over
alphabet Σ. The move-to-front transform mtf(S) is a string of length n which is
generated using Algorithm 2.4.

1 let L be a list of characters from Σ sorted by their first occurrence in S
2 for i← 1 to n do
3 mtf(S)[i]← position of S[i] in the list L
4 move the character S[i] to the front of the list L

Algorithm 2.4: Move-to-front transformation.

24 P R I N C I P L E S

i bin(i) binH(i) S[i] rle(S)[i] mtf(S)[i] rle1(mtf(S))[i]
1 1 ε

2 10 0

3 11 1

4 100 00

5 101 01

6 110 10

7 111 11

A 1

G 2

G 1

G 1

A 2

T 3

T 1

A 1rle

G 2

1rle 1rle

A 2

T 3

0rle 0rle

binH(1) = ε

binH(3) = 1

binH(2) = 0

binH(1 + 1) = 0

binH(2 + 1) = 1

Figure 2.5: Run-length encoding, move-to-front transform and combination of both methods
for the string S = AGGGATT.

The move-to-front transform can easily be inverted when the original list of
characters (the list from line 1 of Algorithm 2.4) is transmitted. Starting with the
same list, for i = 1 to n, set S[i] to the mtf(S)[i]-th character in L, before moving that
character to the front of L.

The attentive reader might have noticed that the transform itself performs no com-
pression at all: neither the size of the alphabet, nor the length of the transform differs
from that of the original sequence. The purpose of the move-to-front transform is
something different: it transforms locally skew character frequencies into globally
skew character frequencies, which is useful for source encoding.

To see what this means, consider the following example: A sequence S of length n
contains four characters A, C, G and T, all with character frequency n

4 . The entropy
of such a sequence can be approximated with H(S) ≈ 2 bits. Now, assume that the
first half of this sequence contains only the characters A and C, while the second half
contains only the characters G and T. If we apply the transform to the sequence, the
first half of mtf(S) will contain only the values 1 and 2 (A and B stay in front of list
L), while the second half of mtf(S) contains one 3, one 4 (moving the characters G
and T to front of L) and the values 1 and 2 for all remaining entries. This means that
the overall sequence contains n− 2 times a 1 or 2, one 3 and one 4. Assuming that
the 1’s and 2’s occur with same frequency, the entropy can be approximated with
H(mtf(S)) ≈ 1, so we reduced the source encoding size by about half.

This effect typically occurs on sequences with locally skew character frequencies:
once a subsequence with skew character frequencies is reached, the dominating
characters are moved to the front of the list L and remain at the front until the end
of the sequence. Therefore, mtf(S) mainly consists of small numbers, resulting in a
globally skew character frequency.

2.2 B L O C K - S O R T I N G C O M P R E S S I O N 25

As depicted in Figure 2.5, run-length encoding and the move-to-front transform
can be combined in the form of rle1(mtf(S)). This combines the strength of both
methods, as

• the move-to-front transform converts local to global skewness.

• rle1 transforms former runs in the sequence to a run-length encoded form and
thereby reduces the size of the sequence.

This combination makes sense when the underlying sequence is both heavily clus-
tered and also has locally skew character frequencies. This idea, in a slightly different
way, comes from the inventors of the BWT, Michael Burrows and David J. Wheeler,
themselves:

Although simple Huffman and arithmetic coders do well in step M2, a
more complex coding scheme can do slightly better. This is because the
probability of a certain value at a given point in the vector R depends
to a certain extent on the immediately preceding value. In practice, the
most important effect is that zeroes tend to occur in runs in R. We can
take advantage of this effect by representing each run of zeroes by a code
indicating the length of the run. A second set of Huffman codes can be
used for values immediately following a run of zeroes, since the next
value cannot be another run of zeroes. [BW94, p. 13]

2.2.4 Block-sorting compression

So far, we have presented the compression methods source coding, run-length en-
coding and move-to-front transform. This is sufficient to present the basic scheme of
“block-sorting compression” [BW94]. Given a string S, the first step is to compute
the BWT L of S. Afterwards, we apply the move-to-front transform and run-length
encoding of ones to L. As final step, the string rle1(mtf(L)) is encoded using source
encoding. The full process chain is depicted in Figure 2.6. The method is called

BWT MTF RLE SRC
string S L mtf(L) rle1(mtf(L)) source-coded

rle1(mtf(L))

Figure 2.6: Process chain of block-sorting compression.

26 P R I N C I P L E S

i L[i] S[SA[i]..SA[i] + 60]
...

...
...

426 i st also der Wahlspruch der Aufklärung.

427 i st das Unvermögen, sich seines Verstandes ohne Leitung eines

428 i st der Ausgang des Menschen aus seiner selbst verschuldeten U

429 i st diese Unmündigkeit, wenn die Ursache derselben nicht am Ma

430 b st verschuldeten Unmündigkeit. Unmündigkeit ist das Unvermöge

431 r standes ohne Leitung eines anderen zu bedienen. Selbstverschu

432 r standes zu bedienen! ist also der Wahlspruch der Aufklärung.

433 r standes, sondern der Entschließung und des Mutes liegt, sich

434 b stverschuldet ist diese Unmündigkeit, wenn die Ursache dersel
...

...
...

Figure 2.7: Excerpt from the BWT and the sorted suffixes from the first paragraph of the
essay “Beantwortung der Frage: Was ist Aufklärung?” from Immanuel Kant
[Kan84]. Each suffix prefixed by sta is preceded by the character r, suffixes
prefixed by st strongly tend to be preceded by the characters i, r and b.

“block-sorting” because it processes a sequence block-wise, mainly because of per-
formance reasons. As each step is reversible, block-sorting compression is a lossless
data compression method.

We now want to explain why block-sorting compression works well in practice.
First of all, for a normal text, the BWT tends to be highly clustered and also contains
a locally skew character distribution: in a normal text, similar contexts normally
tend to be succeeded (but also preceded) by similar characters. As the lexicographic
sorting of text rotations brings those similar contexts together, small portions of the
BWT tend to contain similar characters, see Figure 2.7 for an example of this effect.
This results in a high clustering and also a locally skew character frequency.

The move-to-front transform then converts the locally skew character frequency to
a globally skew character frequency. Run-length encoding of ones then compresses
the string because of the high clustering of the BWT. Finally, as the run-length
encoded move-to-front transform of the BWT contains a skew character frequency,
source encoding is able to compress this string even more.

In Section 4.4 we will see that block-sorting compression is a competitive method
for lossless data compression, although other compressors exist which work bet-
ter on different kinds of data. The main problem of block-sorting compression is
performance: suffix array construction is a very expensive operation, resulting in
slow compression speed. Decompression speed also is a bit slow, mainly because
the backward steps required for BWT retransformation jump in a pseudo-random

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 27

fashion in the BWT, resulting in bad caching properties and therefore long access
times on modern computer architectures. To this end, despite the very popular data
compressor bzip2 [Sew96], block-sorting compression lost relevance in lossless data
compression. However, there have already been papers that address those issues
[FK17; KKP12], so hopefully, this very elegant data compressor will reenter the big
stage of lossless data compression one day.

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S

In this section, we present data structures which allow one to perform operations
of sequence analysis using a BWT. These data structures are essential for sequence
analysis, and will be used intensively when tunneling is applied to data structures
from sequence analysis in Chapter 5. As a reminder, the basic operation necessary to
perform e.g. exact string matching is the backward step (Definition 2.4), that is, for a
character c and some integer i ∈ [1, n], compute

CL[c] + rankL(c, i).

While it is easy to compute CL[c] using a preprocessing step, answering rank-queries
is not that straightforward. A trivial solution would be to set up a two-dimensional
table R such that R[c][i] = rankL(c, i). This table would require σ · n · log2(n) bits of
space, which is way too much for practical applications.

2.3.1 Rank

To present a more space-saving alternative for rank-computation, we start with the
simple case in which the alphabet Σ consists of the two letters 0 and 1. This implies
that we work on bit-vectors, so in the following, we denote by B a bit-vector of size
n. The first such approach was presented in [Jac89], we herein will present a similar
approach.

If the bit-vector B is not too long, the special instruction popcount [War13, pp. 81–
96] can accomplish the task of rank-queries. Let w be the word width of the operating
system (typical values of w are 32 for 32-bit systems or 64 for 64-bit systems). The
instruction popcount for an integer word x is defined as follows:

popcount(x) := rankbin(x)(1, |bin(x)|)

28 P R I N C I P L E S

B :

RB :

1 0 1 1 0 0 0 1 0 1 1 0 · · ·

0 3 4 · · ·

w w w

rankB(1, 10) = RB[1 + 10 div 4] + rankB[9..12](1, 10− 8) = RB[3] + rank0110(1, 2)

Figure 2.8: Example of a two-way rank computation with word width w = 4.

To keep it simple, popcount computes the number of bits set to 1 in an integer word
x. Using popcount, a rankB(1, i)-query for bit-vectors B with n ≤ w can be computed
as follows: put B into an integer word x and set the bits B[i + 1..n] to zero by shifting
the value x exactly n− i positions to the right. Then, applying popcount yields the
desired result, as can be seen in the following example:

rank0110(1, 2) = popcount(01102 div 22) = popcount(012) = 1

So, in the case that n ≤ w, we have an O(1)-time solution to solve rankB(1, i) queries.
In the case n > w, we can precompute a table RB of size n

w , defined as follows:

RB[d] := rankB(1, (d− 1) · w)

If each entry uses w bits (if log2(n) > w would hold, one would not be able to
address all bits of B), the table requires n

w · w = n bits. To answer rankB(1, i)-queries,
we first identify the block in which i is, that is, we compute d := 1 + (i− 1) div w.
Afterwards, the rank can be computed by adding the number of ones before the
j-th block using table RB and the number of ones in the corresponding prefix of the
block:

rankB(1, i) = RB[d] + rankB[(d−1)·w+1..d·w](1, i− (d− 1) · w)

The second rank-query then can be answered using the popcount instruction from
above. An example of this 2-way computation is depicted in Figure 2.8. Thus, using
n bits and an O(n) preprocessing step, we are able to answer rankB(1, i)-queries in
O(1) time. This also clearly gives an O(1) time solution for rankB(0, i)-queries, as
rankB(0, i) = i− rankB(1, i) holds.

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 29

By a two-level division of the bit-vector B into superblocks and blocks, it is possible
to reduce the overhead of additional data structures for rank-queries to 1

4 · n, see
[Vig08] for more details.

2.3.2 Select

Another very useful operation is the select-function in bit-vectors. Analogously to
popcount, there exists a function answering select-queries in an integer word x very
quickly [Vig08].

Suppose we do know the number d of the w-block B[(d − 1) · w + 1..d · w] in
which the i-th set bit in B is. Then, using the select-query on integer words and
the RB-array, a selectB(1, i)-query can be answered with the formula selectB(1, i) =
(d− 1) ·w + select[(d−1)·w+1..d·w](1, i− RB[d]). In order to find the w-Block of the i-th
set bit, as RB is monotonically increasing, a binary search can be used [CN09b]. This
results in an O(log

(n
w
)
)-solution for solving select-queries.

To improve the run-time of select-queries, one thus has to improve the run-time of
finding the w-block in which the considered 1-bit can be found. This can be done
using a two-level approach shown in Figure 2.9. First, we store the block of each w-th
set bit in an array SB[d] := 1 + (selectB(1, (d− 1) · w)− 1) div w. This array requires
at most n

w · log2(
n
w) bits of space. Now, to find the block of the intermediate 1 bits, for

each SB[d]-entry, we store a pointer to another array Sd,B[i] := 1 + (selectB(1, (d−
1) · w + (i− 1))− 1) div w− SB[d] which for each intermediate set bit between the
(d− 1) ·w-th and the d ·w-th set bit stores the offset to the block of the (d− 1) ·w-th
set bit. The pointers require at most n

w · w = n bits, while the additional arrays
need at most log2(SB[d] − SB[d + 1] + 1) + 1 bits of space per entry because we

B :

SB :

S1,B : S2,B :

1 1 1 1 1 0 0 1 0 1 1 0 · · ·

0 1 3 · · ·

w w w

0 1 1 1 0 1 1 2 · · ·

1 + (selectB(1, 7)− 1) div w = SB[1 + (7− 1) div 4] + S1+(7−1) div 4,B[1 + 7 mod 4] = 3

Figure 2.9: Example of a two level block select structure with word width w = 4. The
example shows that the 7-th set bit can be found in the third word block.

30 P R I N C I P L E S

know that the offset must be a value with the upper bound SB[d]− SB[d + 1] + 1. By
concatenating the Sd,B-array into a bigger bit-vector S̃ (pointers are then replaced by
starting positions of the different arrays in S̃), using Jensen’s inequality [Jen06], the
bit-vector S̃ requires at most

w ·
n/w

∑
d=1

log2(SB[d]− SB[d + 1] + 1) + 1

≤ n +
n
w
· log2

(
∑n/w

d=1 SB[d]− SB[d + 1] + 1
n
w

)

≤ n +
n
w
· log2

(
n + n

w
n
w

)
≤ n +

n
w
· log2(w + 1) ≤ 2 · n bits.

Thus, overall we need at most 4 · n bits of space to indicate the w-block of the
i-th set bit using the following procedure: we access the SB[1 + (i− 1) div w]-entry
and follow the pointer into the bit-vector S̃. As the pointers P are starting positions
in S̃ and each array Sd,B contains exactly w entries, the bit width of an entry in
Sd,B is given by P[2+(i−1) div w]−P[1+(i−1) div w]

w . The block of the i-th set bit can be
computed using SB[1+ (i− 1) div w] + S1+(i−1) div w,B[1+ i mod w]. Then, using the
select-query on integer words and the RB-array, we can compute selectB(1, i).

Obviously, it is harder to design data structures for fast select-queries than for fast
rank-queries. Also, in practice, rank-queries turn out to be faster than select-queries
[Vig08]. We once more refer to [Vig08] for a more space-saving implementation of
select-query data structures but now want to move on to rank- and select-queries on
strings.

2.3.3 Wavelet trees

A simple way to introduce rank- and select-queries on a string S of length n is given
by σ bit-vectors of size n, where each bit-vector Bc for a certain character c ∈ Σ
indicates if a position i in S contains the character c, that is, Bc[i] = 1⇔ S[i] = c. By
adding rank and select support to each such bit-vector, we are able to compute rank-
and select-queries fast using rankS(c, i) = rankBc(1, i) and selectS(c, i) = selectBc(1, i).

The problem with this solution is that it requires more than σ · n bits, which is too
much for big data. Instead, we present a tree-based structure called wavelet tree to
accomplish the same task. Wavelet trees were developed by Grossi et al. [GGV03],

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 31

and since then have turned out to be extremely flexible and very useful in many
applications, see [Nav14] for more information.

Definition 2.11 (Wavelet tree). Let S be a string of length n over alphabet Σ. Let A ⊆
Σ be a subset of the alphabet Σ. We define by SA the string of length ∑c∈A rankS(c, n)
obtained by removing all characters c 6∈ A from string S, that is,

SA[i] := S[min{ j ∈ [1, n] | ∑
c∈A

rankS(c, j) = i }].

A tree decomposition of the alphabet Σ is a binary tree T = (V, E) with label
function λ : V → { A | A ⊆ Σ } fulfilling the following conditions:

• T has exactly σ leaves whose disjoint union forms the alphabet Σ, that is,⋃̇
v∈V

v is a leaf
λ(v) = Σ.

• Each inner node v ∈ V has exactly two children ul and ur. Additionally, for
each inner node v with children ul and ur, λ(v) = λ(ul) ∪̇ λ(ur) holds.

Now, let T = (V, E) be a tree decomposition of the alphabet Σ. A (T-shaped)
wavelet tree W(T, S) = (V, E) consists of the tree T and |V| − σ bit-vectors. For each
inner node v ∈ V with left child ul and right child ur the bit-vector Bv of length
|Sλ(v)| is defined as follows:

Bv[i] :=

0 , if Sλ(v)[i] ∈ λ(ul)

1 , if Sλ(v)[i] ∈ λ(ur)

An example of a wavelet tree can be found in Figure 2.10. Basically, a wavelet tree
at each inner node splits a sequence in two subsequences. Each subsequence consists
of the characters contained in the corresponding node of the alphabet decomposition
tree. Moreover, a wavelet tree does not directly encode the sequence. Instead it
encodes the sequence using a bit-vector Bv which indicates if a symbol belongs to
the left subtree (Bv[i] = 0) or to the right subtree (Bv[i] = 1).

The size of a wavelet tree strongly depends on the shape of the alphabet tree
decomposition. For example, if each inner node of the tree decomposition splits its
label (the remaining alphabet) into two almost equal sub-alphabets, each path from
the root to a leaf has almost the same length. This special shaped wavelet tree is
called a balanced wavelet tree, whose size can be approximated with n · log σ bits.

32 P R I N C I P L E S

yeep$yaass
1001010011

ee$aa
11011

$

eeaa

1100

aa ee

ypyss

10111

p

yyss

1100

ss yy

$, a, e, p, s, y

$, a, e

$

a, e

a e

p, s, y

p

s, y

s y

Figure 2.10: Wavelet tree of the string S = yeep$yaass (left) as well as the underlying tree
decomposition of the alphabet Σ = {$, a, e, p, s, y} (right).

Therefore, a balanced wavelet tree has a size almost equal to the naive representation
of the string S. As another example, if the tree decomposition is given by a Huffman
tree [Huf52], we call the wavelet tree Huffman-shaped. As Huffman codes are
optimal, the size of a Huffman-shaped wavelet tree can be approximated with
H(S) · n bits, where H(S) is the entropy of S.

By initializing rank- and select-support on each bit-vector in a wavelet tree4, the
tree enables efficient computation of rank-, select- and also access-queries5 which will
be described next.

Answering rankS(c, i) - queries

The idea of answering rank-queries is based on the following observation. Let v by
an inner node of a wavelet tree with left child ul and right child ur such that c ∈ λ(v)
holds. Then,

rankSλ(v)
(c, i) =

rankSλ(ul)
(c, rankBv(0, i)) , if c ∈ λ(ul)

rankSλ(ul)
(c, rankBv(1, i)) , if c ∈ λ(ur)

.

Thus, to answer rank-queries, one starts at the root node of the wavelet tree, and
at each inner node checks if the character c belongs to the left or right child. Then,
one follows the edge to the appropriate child node and replaces i with the value

4 In practice, all bit-vectors are concatenated, so only one rank- and select-support is necessary. To
access each bit-vector individually, the inner nodes in the tree decomposition then contain the start
positions of the individual sequences in the common bit-vector.

5 An access-query asks for the symbol at position i, i.e. accessS(i) := S[i].

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 33

rankBv(0, i) or rankBv(1, i) respectively. By repeating this procedure, once a leaf is
reached, the desired rank-answer is given by the value of the variable i.

Answering selectS(c, i) - queries

Similar to rank-queries, there is an analogous observation for select-queries: Let v by
an inner node of a wavelet tree with left child ul and right child ur such that c ∈ λ(v)
holds. Then,

selectSλ(v)
(c, i) =

selectBv(0, selectSλ(ul)
(c, i)) , if c ∈ λ(ul)

selectBv(1, selectSλ(ur)
(c, i)) , if c ∈ λ(ur)

.

In contrast to the top-down traversal in rank-queries, one starts at the leaf of the
character c. Then, each step consists of an update of the value of i to selectBv(0, i) if
the current node is a left child of the parent node v, or to selectBv(1, i) if the current
node is a right child of the parent node v. This induces a path from the leaf of
character c to the root node, and the desired answer of the select-query is given in
the variable i.

Answering accessS(i) - queries

Once more, for access-queries, a recursive relation is given as follows: Let v be an
inner node of a wavelet tree with left child ul and right child ur such that S[i] ∈ λ(v)
holds. Then,

accessSλ(v)
(i) =

accessSλ(ul)
(rankBv(0, i)) , if Bv[i] = 0

accessSλ(ur)
(rankBv(1, i)) , if Bv[i] = 1

.

Therefore, to answer access-queries, one starts at the root node of the tree. In each
step, the variable i is updated to rankBv(Bv[i], i). Afterwards, we follow the edge to
the left child if Bv[i] = 0 holds or to the right child if Bv[i] = 1 holds. Once a leaf v is
reached, the desired character is found.

Because a wavelet tree supports rank-, select- and access-queries, it can be seen as
a replacement of a traditional string. Once the wavelet tree of a string is set up, it
is no longer necessary to keep the original string because the tree itself contains all
necessary data. The run-time of the operations strongly depends on the length of the

34 P R I N C I P L E S

paths from the root node to the leaves. For example, in case of a balanced wavelet
tree, each such path has length log σ, and as each of the above described operations
takes O(1) processing time per inner node, all operations can be performed in
O(log σ) time. In case of a Huffman-shaped wavelet tree, the timings may vary
depending on how often a character occurs in the original sequence.

Aside from rank-, select- and access-queries, wavelet trees offer a plethora of other
operations, see e.g. [Nav14] for an exhaustive list. We want to introduce one more
operation which will turn out to be extremely useful in the following applications:
the intervalsymbols-function. The function is kind of an extended rank-operation. For
a given range [i, j], intervalsymbols(i, j) computes the alphabet of S[i..j] as well as the
ranks of each character at position i− 1 and the ranks at position j. The function is
defined as follows:

intervalsymbolsS(i, j) := { 〈 c, rankS(c, i− 1), rankS(c, j) 〉 | c ∈ Σ occurs in S[i..j] }

The usefulness of the intervalsymbols-function can be seen when a BWT L of a
string S is encoded in a wavelet tree. Let ω be a substring of S, and let [i, j] be the
ω-interval in L. Calling intervalsymbols with the range [i, j] then returns all preceding
characters of ω in the original string. Furthermore, by modifying each triple 〈c, lb, rb〉
to 〈c, CL[c] + lb + 1, CL[c] + rb〉, we precisely obtain all cω-intervals contained in the
original string. We therefore introduce another function getIntervals which automates
this process and is shown in Algorithm 2.5.

The getIntervals-function can be used to enumerate all k-mer intervals6 of L: start-
ing with the interval [1, n], the first call of getIntervals generates all 1-mer intervals.
If we repeat calling getIntervals for each 1-mer interval, all 2-mer intervals are ob-
tained. Thus, by repeating this procedure, all k-mer intervals of a certain length k
can be obtained. This k-mer enumeration was presented in [BBO12], see also [Ohl13,
pp. 323–328] for more details. The run-time of the intervalsymbols-function and thus of
the getIntervals-function on a balanced wavelet tree is bound by O(z ·max{σ

z , log σ})
where z is the number of distinct symbols in S[i..j], see e.g. [Ohl13, p. 316].

The combination of a BWT and a wavelet tree turns out to be very powerful.
For example, given a pattern P of length m, the P-interval can be computed in
O(m · log σ)-time. In conjunction with the suffix array, this allows one to perform
exact string matching in O(m · log σ + occ) time, see Algorithm 2.2. The combination
of wavelet tree and BWT is often referred to as FM-index [FM05], despite the fact that

6 A k-mer of a string S is a subsequence of length k.

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 35

Data: BWT L of a string S of length n encoded as a wavelet tree, C-array CL, ω-interval [i, j].
Result: A set M containing all cω-intervals, that is,

M := { 〈c, [lb, rb]〉 | S contains cω and [lb, rb] is the range of the cω-interval in L }.
1 M← ∅
2 M̃← intervalsymbolsL(i, j)
3 foreach 〈c, [lb, rb]〉 ∈ M̃ do
4 M← M ∪ {〈c, [CL[c] + lb + 1, CL[c] + rb]〉}
5 return M

Algorithm 2.5: Implementation of the getIntervals function. A different implementation
of getIntervals can be found in [Ohl13, p. 316].

its inventors used a different data structure to perform rank-queries. An FM-index is
typically enriched with suffix array samples, allowing not only the performance of a
fast backward search but also fast access to the current position in the underlying
text. As the topics in this thesis have no necessity to access suffix array entries, we
understand an FM-index as a BWT encoded in a balanced wavelet tree, enriched
with the CL-array.

2.3.4 Balanced parentheses sequences

Balanced parentheses sequences are a special sort of sequences built over a two-
symbol alphabet Σ = {(,)}. As the name suggests, these sequences correspond to
parentheses sequences in which the number of opening parentheses corresponds
to the number of closing parentheses. Moreover, the parentheses are “correct”, that
is, for any prefix of such a sequence, the number of opening parentheses must be
greater or equal to the number of closing parentheses.

Definition 2.12 (Balanced parentheses sequence). A balanced parentheses sequence
(BPS) is a sequence which is produced by the following inductive rules:

• the empty sequence ε is a BPS.

• if P is a BPS, then the sequence (P) is a BPS.

• if P and Q are BPS, then the concatenation PQ is a BPS.

An example of a balanced parentheses sequence is given in Figure 2.11. Those
sequences are typically represented by a bit-vector, where a 1 corresponds to an
opening and a 0 corresponds to a closing parenthesis. BPS are useful to e.g. represent
the topology of a tree: starting at the root node of the tree, at each node write an
opening parenthesis, write the BPS of all children from left to right, and then write

36 P R I N C I P L E S

((() ()) (()) () (()) () () () () () ())

1

2

3 4

5

6

7 8

9

10 11 12 13 14 15

Figure 2.11: A tree and its tree topology represented using a balanced parentheses sequence.
The nodes in the tree are numbered according to a pre-order traversal of the
tree.

a closing parenthesis. By this construction, the opening and closing parentheses
of a node enclose the BPS of its children. For more information on tree topology
representations using BPS, see e.g. [Jac89] or [BBO17].

We now want to describe some basic operations on BPS. The first such opera-
tion for an opening parenthesis returns the position of its corresponding closing
parenthesis.

Definition 2.13 (findclose). Let P be a BPS of length n, and let i ∈ [1, n] be an integer
such that P[i] = ”(” holds. The findclose-function is defined as follows:

findcloseP(i) := min{ j ∈ [i + 1, n] | B[i..j] is a BPS }

As indicated above, to allow parent navigation in a BPS of a tree topology, for a
given opening parenthesis at position i one has to find the opening parenthesis j < i
such that the opening parenthesis at j and its corresponding closing parenthesis
enclose i as close as possible. This special function is called the enclose-function, and
is defined as follows:

Definition 2.14 (enclose). Let P be a BPS of length n, and let i ∈ [1, n] be an integer
such that P[i] = ”(”. The enclose-function then is defined as follows:

encloseP(i) := (max{ j ∈ [1, i− 1] | P[j] = ”(” and findcloseP(j) > i} ∪ {0})

Similar to rank- and select-queries, it is possible to set up support structures re-
quiring less than n bits such that findclose- and enclose-queries can be computed in
constant time. However, those support structures are considerably more complex

2.3 WAV E L E T T R E E S , R A N K , S E L E C T A N D B A L A N C E D PA R E N T H E S E S 37

i

S [i]

1

ε

2

A

3

A
G

C
A

4

A
G

G
T

G
C

5

C

6

C
A

7

G
A

8

G
C

9

G
C

A

10

G
G

T
G

A

11

G
G

T
G

C

12

G
T

G
A

13

G
T

G
C

14

T
G

A

15

T
G

C

((() ()) (()) () (()) () () () () () ())

Figure 2.12: A list S of lexicographically sorted strings as well as the BPS of the prefix tree
of the strings. Blue boxes in the strings indicate which string is a prefix of
another, and thereby forms the prefix tree shape (see also Figure 2.11). To find
the longest prefix of the 4-th string (colored green), one determines the 4-th
opening parenthesis in the BPS, searches for the enclosing parentheses (red),
and determines the rank of the opening parenthesis, so S [2] is the longest prefix
of S [4].

and are beyond the scope of this thesis. We refer to [Jac89; Gea+06; SN10] for more
information.

Instead, we want to describe a simple application of BPS and the enclose-method.
Suppose we have a list S which contains lexicographically sorted strings. Given
an integer i, we want to find the index j such that S [j] is the longest prefix of S [i].
Because the relation “is prefix of” is transitive, it forms the shape of a tree, as can be
seen by comparing the Figures 2.11 and 2.12. By representing this tree topology with
a balanced parenthesis sequence P, the index j of the longest prefix of a string S [i]
can be found using

j← rankP(”(”, encloseP(selectP(”(”, i))).

An explanation of the formula is given as follows: by selecting the i-th opening
parenthesis in P, we enter the opening parenthesis of the i-th node, where the nodes
of the tree are numbered according to a pre-order traversal of the tree (see Figure
2.11). By determining the position of the surrounding parentheses, we implicitly
navigate to the parent node of the current node in the tree. Then, by ranking the
number of open parentheses, we obtain the label of the current node, which then
corresponds to the id of the longest prefix.

38 P R I N C I P L E S

2.4 W H E E L E R G R A P H S

Wheeler graphs are a special class of graphs which are closely related to the BWT.
First described by Gagie et al. [GMS17], the main purpose of Wheeler graphs is to
describe other string data structures in the form of a special sort of graphs, allowing
these data structures to be represented in a very compact form. In Chapter 3, we will
use Wheeler graphs as a foundation of tunneling. There have been some results on
the hardness of Wheeler graph recognition [GT19], but here we will mainly focus on
applications of Wheeler graphs.

Different from the original definition of Wheeler graphs [GMS17], we herein
present a slightly modified definition of Wheeler graphs, mainly because this defini-
tion is closer to the LF-mapping.

Definition 2.15 (Wheeler graph). Let G = (V, E) be a directed multigraph such that
each node in G has in- and outdegree of at least 1, and let λ : E→ Σ be a function
asserting a label (character) to each edge. G is a Wheeler graph if there is an ordering
≺ of the nodes such for any pair of edges e = (u, v) and e′ = (u′, v′) the following
monotonicity properties hold:

λ(e) < λ(e′) ⇒ v � v′,

λ(e) = λ(e′) and u ≺ u′ ⇒ v � v′.

The following changes of Definition 2.15 in comparison to the classical Wheeler
graph definition have been made:

• In the original definition, the graph was not allowed to be a multigraph, that
is, no multiple edges between two nodes were allowed. On Page 59, we will
see that it is useful to define Wheeler graphs as multigraphs.

• Definition 2.15 requires each node in the graph to have in- and outdegree
of at least one. We added this condition because of the characteristics of the
LF-mapping as a cyclic tour through the BWT, and in Section 5.2 will see that
this condition brings a deep connection to another string based data structure.

• The original first monotonicity property required v ≺ v′ to ensure that the
incoming edges of any node v all carry the same label. In the herein presented
topics, we do not need such a condition, and therefore allow nodes with
differently labeled incoming edges.

2.4 W H E E L E R G R A P H S 39

i L[i] S[SA[i]..n]
1 y $
2 e asy$
3 e asypeasy$
4 p easy$
5 $ easypeasy$
6 y peasy$
7 a sy$
8 a sypeasy$
9 s y$
10 s ypeasy$

1
y

2
e

3
e

4
p

5$

6
y

7
a

8
a

9
s

10
s

Figure 2.13: Suffix array and BWT (left) as well as BWT Wheeler graph (right) of the string
S = easypeasy$. The i-th node in the Wheeler graph corresponds to the suffix
S[SA[i]..n], each outgoing edge of the i-th node in the graph carries the label L[i]
and leads to the node labeled LF[i]. As an example, the LF-mapping and L-entry
at position 10 as well as the corresponding edge in the graph are colored blue.
Parts of this image were already published in [BD19] © 2019 IEEE.

One should of course note that the recognition hardness results of Wheeler graphs
[GT19] might not hold true for the modified definition, but as explained above, we
want to focus on the applications and the operating principle of Wheeler graphs
within this thesis.

Wheeler graphs can be used to represent a couple of string data structures, for
example, tries [Fre60], de Bruijn graphs [DeB46; Iqb+12], wavelet trees [GGV03], or
the BWT itself; see [GMS17] for a more exhaustive list. We will review some of these
data structures and their Wheeler graph representations before giving more detail
on Wheeler graphs.

We start with the simplest data structure that can be represented as a Wheeler
graph: the BWT. Let L be a BWT of length n with LF-mapping LF. To represent L

as a Wheeler graph, we create exactly n nodes which are labeled from 1 up to n.
Afterwards, for each node labeled with i, we create an outgoing edge labeled L[i]
which points to the node with label LF[i].

Corollary 2.16. Let L be a BWT of length n with LF-mapping LF. Let G = ([1, n], E) be a
graph whose edges are defined as follows:

(i, j) ∈ E :⇔ LF[i] = j with label function λ((i, j)) := L[i]

Then, using the node order i ≺ j :⇔ i < j, G is a Wheeler graph.

40 P R I N C I P L E S

Proof. G certainly is a graph where each node has in- and outdegree of at least one.
Let M be the BWT matrix of L, and let e = (i, LF[i]) and e′ = (j, LF[j]) be two edges
of G.

If λ(e) < λ(e′) holds, L[i] < L[j] is implied, and therefore, the matrix row MLF[i] =

L[i]Mi[1..n− 1] is lexicographically smaller than the row MLF[j] = L[j]Mj[1..n− 1].
As the rows of M are sorted lexicographically, LF[i] < LF[j] is implied.

If λ(e) = λ(e′) and i < j holds, L[i] = L[j] as well as Mi ≤lex Mj holds. Con-
sequently, for the rows MLF[i] = L[i]Mi[1..n− 1] and MLF[j] = L[j]Mj[1..n− 1] the
relation MLF[i] ≤lex MLF[j] must hold. Because of the lexicographic order of the rows
in M, this implies LF[i] ≤ LF[j].

2.4.1 De Bruijn graphs

Another data structure that can be represented as a Wheeler graph is given by de
Bruijn graphs. De Bruijn graphs were originally invented to solve combinatorial
problems [DeB46]. Nowadays, de Bruijn graphs are also used in bioinformatics, for
example for genome assembly [IW95] or to express variations between different
strings [Iqb+12]. In this thesis, a special class of string-related de Bruijn graphs are
considered. Given a string S of length n and an order k ∈ [1, n], the nodes of the
graph correspond to the set of k-mers of the cyclic string of S. Each time two k-mers
x and y overlap by k− 1 characters in the cyclic string of S, an edge from x to y is
drawn. The following definition was already used in [Bai+20].

Definition 2.17 (De Bruijn graph). Let S be a string of length n and k ∈ [1, n]. If
we concatenate the k-mer prefix of S to S itself, then we obtain the string Zk(S) :=
S[1..n]S[1..k], which we call the k-cyclic string of S. Furthermore, the set of all k-mers
of Zk(S) is

K := { Zk(S)[i..i + k− 1] | i ∈ [1, n] }.

The de Bruijn graph Gk(S) = (K, E) of order k is a directed multigraph, where the
multiset of edges is defined as (the superscript m denotes the multiplicity of an
edge):

E := { (x[1..k], x[2..k + 1])m | x ∈ Σk+1 occurs exactly m times in Zk(S)}.

2.4 W H E E L E R G R A P H S 41

Multiple de Bruijn graphs Gk(S1) = (K1, E1), . . . , Gk(Sm) = (Km, Em) of the same
order k can be combined to a de Bruijn graph Gk(S1, . . . , Sm) = (K, E) by merging
the k-mer sets and the set of edges, that is, K :=

⋃m
i=1Ki and E :=

⊎m
i=1 Ei.

An example of a de Bruijn graph can be found in Figure 2.14. One should note that,
independent of the order k, each de Bruijn graph Gk(S) contains exactly n edges. To
represent a de Bruijn graph as a Wheeler graph, one performs the following steps:

1. label each edge (x, y) with the character x[1].

2. reverse each edge, that is, replace an edge (x, y) with the edge (y, x).

3. set up a list of lexicographically sorted k-mers.

4. replace the label of each node with the lexicographic rank of the corresponding
k-mer in the list.

Similar to Corollary 2.16, it is easy to show that the arising graph is a Wheeler
graph. The main problem of the construction is that the direction of edges is reversed.
The reversal is necessary because a BWT (as well as a Wheeler graph) is traversed

ACCGAG

GT

TG

GG

GA

G$3 A$1A$2

$1A$2C$3A

k-mer lex. rank
$1A 1
$2C 2
$3A 3
A$1 4
A$2 5
AC 6
AG 7
CG 8
G$3 9
GA 10
GG 11
GT 12
TG 13

687

12

13

11

10

9 45

123

A

C

G

A

$1

C

G

T

G

G

A

$2

A

G

T

G

G

$3

Figure 2.14: Combined de Bruijn graph of order k = 2 for the strings S1 = ACGA$, S2 =
CGTGGA$2 and S3 = AGTGG$3 (left), list of k-mers and lexicographic ranks of S1,
S2, S3 (middle), corresponding Wheeler graph with reversed edges and edge
labels (right). The Wheeler graph is made by replacing the k-mers in the nodes of
the de Bruijn graph by their lexicographic ranks, reversing edges, and labeling
each edge with the first character of the k-mer it originated from.

42 P R I N C I P L E S

using backward steps, while a de Bruijn graph is traversed using a “forward navi-
gation”. The problem can easily be fixed by considering the de Bruijn graph of the
reversed string(s): there is a one to one correspondence between k-mers and reversed
k-mers, so the undirected de Bruijn graph of a string S and the undirected de Bruijn
graph of the reversed string S are isomorphic. In the directed case, the graphs still
are isomorphic except that the edges are reversed. Now, considering the Wheeler
graph of the reversed de Bruijn graph, one notes that the edges are reversed once
again and therefore correctly represent the edges in the original de Bruijn graph.

2.4.2 Tries

Another popular string data structure we want to present here is given by a tree-like
dictionary of multiple strings, typically referred to as a trie [Fre60]. Tries are used
in many applications. For example, the “Swiss army knife” of sequence analysis,
the suffix tree [Wei73], is a special form of a trie built from all suffixes of a given
string S. Tries can be enhanced with “failure links” which are useful for finding all
occurrences of a set of patterns in a given string S [AC75]. We will introduce failure
links later in Section 5.4.

Definition 2.18 (Trie). Let S = {S1, . . . , Sm} be a set of null-terminated strings. The
trie T (S1, . . . , Sm) = (V, E) with label function λ : E → Σ is a directed rooted tree
satisfying the following conditions:

• No two outgoing edges of a node carry the same label: if e = (u, v) and
e′ = (u, v′) are two edges in the graph and v 6= v′, then λ(e) 6= λ(e′) must
hold.

• There is a one to one correspondence between leaves of the trie and strings of
the set S : S ∈ S if and only if a path p = (u1, . . . , u|S|+1) from the root node to
a leaf of T (S1, .., Sm) exists such that S = λ((u1, u2)) · · · λ((u|S|, u|S|+1)).

Let u ∈ V be a node in the trie, and let u1, u2, . . . , ui be the nodes visited on the
unique path from the root to u. We denote by λ(u) := λ((u1, u2)) · · · λ((ui−1, ui))

the node label of the node u, and define λ(u) := ε in the case that u is the root.

An example of a trie can be found in Figure 2.15. The representation of a trie using
a Wheeler graph is quite similar to the representation of de Bruijn graphs, but has
two major differences: instead of reversing the edges, one reverses the node labels.

2.4 W H E E L E R G R A P H S 43

Second, because the herein defined Wheeler graphs have to be cyclic, but tries are
acyclic, a little workaround is needed to make tries cyclic. The full procedure is as
follows:

1. set up a list of lexicographically sorted reversed node labels of all inner nodes.

2. label each inner node with the lexicographic rank of its reversed node label.

3. redirect the endpoints of edges pointing to leaves to the root node.

4. remove all isolated nodes (former leaves).

Using this little trick, a trie can be made cyclic and therefore can be represented as
a Wheeler graph. Despite the modified representation of tries as Wheeler graphs,
we once more refer to Corollary 2.16 and also [GMS17] that the above conversion
produces a Wheeler graph–the main arguments still stay the same, and the redirec-
tion of edges from leaves to the root node do not change the order because each
edge is labeled with the smallest character $ ∈ Σ and points to the lexicographically
smallest node.

A C

C G
G

G T T

A G G

$ G G

$ A

$

rev. node label lex. rank
ε 1
A 2
AGCA 3
AGGTGC 4
C 5
CA 6
GA 7
GC 8
GCA 9
GGTGA 10
GGTGC 11
GTGA 12
GTGC 13
TGA 14
TGC 15

1

2 5

6 7 8

9 14 15

3 12 13

10 11

4

A C

C G
G

G T T

A G G

G G

A

$

$
$

Figure 2.15: Trie of the strings S1 = ACGA$, S2 = CGTGGA$2 and S3 = AGTGG$3 (left), list of
reversed inner node labels and lexicographic ranks (middle), corresponding
Wheeler graph (right). The Wheeler graph arises by labeling each node with the
lexicographic rank of its reversed label, removing the leaves and moving the
endpoints of edges pointing to former leaves to the root node.

44 P R I N C I P L E S

2.4.3 Succinct graph representation

After seeing some examples of Wheeler graphs, the final topic of this section will be
how Wheeler graphs can be represented succinctly. To this end, a string L behaving
similar to a classical BWT is used. Additionally, two bit-vectors are used to represent
the in- and outdegree of the nodes in the graph. Before going into more detail, we
want to give the concrete definition of such a succinct representation.

Definition 2.19 (Succinct Wheeler graph representation). Let G = (V, E) be a
Wheeler graph with n nodes and m edges, label function λ : E → Σ and node
order u1 ≺ · · · ≺ un. Denote by Cout(ui) the number of outgoing edges of nodes
which are strictly smaller than ui, that is, Cout(ui) := ∑i−1

j=1 degout(uj).
A succinct Wheeler graph representation of G is given by a string L of size m and

two bit-vectors Dout and Din of size m + 1 fulfilling the following conditions:

• For any node ui, the substring L[Cout(ui) + 1..Cout(ui) + degout(ui)] contains
the labels of all outgoing edges of ui, i.e. the following multisets are equal:
{L[Cout(ui) + 1], . . . , L[Cout(ui) + degout(ui)]} = { λ((ui, w)) | (ui, w) ∈ E }.

• The bit-vector Dout contains the reversed unary encoded out-degrees of all
nodes in the underlying node order and is terminated by a 1, that is,
Dout = 10degout(u1)−110degout(u2)−1 · · · 10degout(un)−11.

• The bit-vector Din contains the reversed unary encoded in-degrees of all nodes
in the underlying node order and is terminated by a 1, that is,
Dout = 10degin(u1)−110degin(u2)−1 · · · 10degin(un)−11.

The string F denotes the string obtained by sorting the characters of L.

At first glance, Definition 2.19 looks a bit complicated, so we want to explain the
definition in a constructive way. To build the string L, one traverses all the nodes
of the graph in the underlying order while appending the labels of outgoing edges
to L. Similarly, to build the bit-vectors Dout and Din, one traverses all nodes in the
underlying order and appends the strings 10degout(u)−1 respectively 10degin(u)−1 to
the bit-vectors, before appending a terminating 1-bit at the end. An example of a
succinct representation of a Wheeler graph can be found in Figure 2.16. Note that
the succinct representation of a Wheeler graph for a normal BWT (see Figure 2.13)
consists of the normal BWT as well as two bit-vectors filled only with ones. Because

2.4 W H E E L E R G R A P H S 45

1

2 5

6 7 8

9 14 15

3 12 13

10 11

4

A C

C G
G

G T T

A G G

G G

A

$

$
$

L[i] Dout[i] Din[i] F[i]i
A 1 1 $1

C 0 0 $2

G 1 0 $3

C 0 1 A4

$ 1 1 A5

$ 1 1 A6

G 1 1 C7

G 1 1 C8

T 1 1 G9

T 1 1 G10

A 1 1 G11

$ 1 1 G12

A 1 1 G13

G 1 1 G14

G 1 1 G15

G 1 1 T16

G 1 1 T17

1 118

Figure 2.16: Succinct representation of a Wheeler graph. The nodes and edges in the graph
correspond to colored entries in L, Dout and Din. Colored entries in F correspond
to the endpoints of the colored edges in the graph.

those additional bit-vectors in this case do not represent any further information,
one typically omits them when dealing with a normal BWT.

We want to note that Definition 2.19 differs from other definitions on succinct
representations of Wheeler graphs like the one in [GMS17]. In other definitions,
nodes with an in- or outdegree of zero are allowed. To represent such zero-degrees,
one has to encode them using the string 1, so a degree of 1 has to be represented
using 10, a degree of 2 with 100, and so on. Since we defined Wheeler graphs to
be graphs where each node has an in- and outdegree of at least 1, we do not need
to encode a zero-degree and therefore are able to save one bit per degree in the
representation. This reduces the size of the bit-vectors from n + m to m, excluding
the termination bit.

The representation is edge-based: a position i ∈ [1, m] in L specifies the starting
point of an outgoing edge, while a position i ∈ [1, m] in F specifies the endpoint
of an incoming edge. The bit-vectors Dout and Din serve as a mapping between
edges and nodes, as each 1-bit in the vectors corresponds to a node in the graph.
Unsurprisingly, if i ∈ [1, m] is the starting point of an edge in L, the endpoint of the

46 P R I N C I P L E S

1
y

2 e

3

4
y

5a

6s

$
p

DoutL Din F
y 1 1 $
e 1 1 a

p 1 1 e

$ 0
y 1 1 p

a 1 1 s

s 1 1 y

0 y

1 1

1
2
3

4
5
6

Figure 2.17: Connection between L and Dout as well as F and Din. The left-hand side shows
a Wheeler graph, the right-hand side a succinct representation of the graph. On
the right it is shown that Din maps the endpoints of edges to nodes, while Dout

maps nodes to the starting points of edges. Parts of this image were already
published in [BD19] © 2019 IEEE.

edge in F can be found using a BWT backward step, that is, the endpoint can be
computed using CL[i] + rankL(L[i], i). Moreover, if i ∈ [1, m] is the starting point of
an edge in L, its start node can be computed using rankDout(1, i). Similarly, the node
to which the endpoint of an edge i ∈ [1, m] in F is connected can be computed using
rankDin

(1, i). To put this differently, the bit-vector Dout can be used to map nodes to
the starting points of edges in L, while the bit-vector Din is used to map endpoints of
edges in F to connected nodes, see also Figures 2.16 and 2.17. We are now ready to
give a navigation theorem in Wheeler graphs.

Theorem 2.20. Let G = (V, E) be a Wheeler graph with node order u1 ≺ · · · ≺ un, and
let L, Dout and Din be a succinct representation of G. Furthermore, let (ui, uj) ∈ E be an
edge with label c := λ((ui, uj)), and define Cin(uj) := ∑

j−1
k=1 degin(uk).

(i) The string L[selectDout(1, i)..selectDout(1, i + 1)− 1] contains precisely all labels of
outgoing edges of the node ui.

(ii) There exists an integer k ∈ [selectDout(1, i)..selectDout(1, i+ 1)− 1] such that L[k] = c
and CL[c] + rankL(c, k) ∈ [Cin(uj) + 1, Cin(uj) + degin(uj)].

(iii) For any k ∈ [Cin(uj) + 1, Cin(uj) + degin(uj)], rankDin
(1, k) = j holds.

Proof.

(i) By the definition of Dout in Definition 2.19, using the notation from the same def-
inition, selectDout(1, i) = CDout(ui) + 1 and selectDout(1, i + 1)− 1 = CDout(ui) +

degout(ui) must hold. The statement then directly follows from Definition 2.19.

2.4 W H E E L E R G R A P H S 47

(ii) Define [lb, rb] := [selectDout(1, i), selectDout(1, i + 1)− 1]. The statement can be
shown by the following two inequalities:

CL[c] + rankL(c, lb− 1) ≤ Cin(uj) + degin(uj) (2.1)

CL[c] + rankL(c, rb) > Cin(uj) (2.2)

For Inequality (2.1), we repeat the properties from Definition 2.15:

λ(e) < λ(e′) ⇒ v � v′,

λ(e) = λ(e′) and u ≺ u′ ⇒ v � v′.

The value CL[c] identifies the number of edges in G with a lexicographically
smaller label than c, so by the first monotonicity property, those edges must lead
to nodes v ∈ V with v � uj. Analogously, the value rankL(c, lb− 1) includes
the number of edges with label c whose origin nodes u ∈ V fulfill u ≺ ui (the
labels of outgoing edges in L are ordered according to the node order in G).
By the second monotonicity property, these edges also lead to nodes v ∈ V
with v � uj. As the number of edges pointing to nodes v ∈ V with v � uj

is bound by the value Cin(uj) + degin(uj), we obtain CL[c] + rankL(c, lb− 1) ≤
Cin(uj) + degin(uj).

For Inequality (2.2), the properties in reversed implication order are as follows:

v ≺ v′ ⇒ λ(e) ≤ λ(e′),

v ≺ v′ ⇒ (λ(e) 6= λ(e′)) ∨ (u � u′).

According to these properties, edges (u, v) with v ≺ uj can be split in edges
(u, v) with λ((u, v)) < c and edges (u, v) with λ((u, v)) = c and u � ui. The
number of edges e with λ(e) < c is clearly given by CL[c]. The number of edges
(u, v) with λ((u, v)) = c and u � ui is strictly smaller than rankL(c, rb) because
their edge labels must be contained in L[1..rb], and rankL(c, rb) includes at least
one additional edge label c from the edge (ui, uj). Combining both observations
then gives the inequality Cin(uj) < CL[c] + rankL(c, rb), which concludes the
statement.

48 P R I N C I P L E S

(iii) This directly follows from Definition 2.19 as the vector Din is the concatenation
of the reverse unary encoded indegrees of nodes sorted by the node ordering
of the graph.

Theorem 2.20 can be applied as follows: say, we are at a node with rank i, and
want to navigate to the node with rank j using an edge (i, j) with label λ((i, j)) = c.
First, according to statement (i), we can navigate to the labels of outgoing edges
using

[lb, rb]← [selectDout(1, i), selectDout(1, i + 1)− 1].

We might check if an outgoing edge labeled c exists by checking rankL(c, lb− 1) for in-
equality with rankL(c, rb). Now, we follow the edge using k← CL[c] + rankL(c, rb) by
statement (ii). Finally, we can find the rank of our target node using j← rankDin

(1, k)
by statement (iii). This allows us to traverse the Wheeler graph by using only the
components L, Dout and Din. As another example, say we are at the starting point of
an edge i in L and Dout. To find the target node, one can apply the following formula:

j← rankDin
(1, CL[L[i]] + rankL(L[i], i))

Not shown here, but straight forward to show is that the node of an edge i in L and
Dout can be found using rankDout(1, i). Similarly, the labels of the incoming edges of a
node with rank i can be found in the substring F[selectDin

(1, i)..selectDin
(1, i + 1)− 1].

In one last point, we want to note that a BWT can also be traversed with forward
instead of backward steps: without giving explicit proof, the connection LF−1[i] =
selectL(F[i], i− CF[F[i]]) holds. Therefore, a Wheeler graph can be traversed in both
directions, but in typical applications, the backward step is preferred to the forward
step as rank-queries can be executed faster than select-queries.

3
T U N N E L I N G T H E O R Y

In this chapter we will present a technique called “tunneling”. Tunneling was in-
troduced by the author of this thesis for the purpose of data compression [Bai18],
but since then has been extended to the field of sequence analysis [Ala+19]. The
technique uses Wheeler graphs as a base, but to give the reader more insight on
the technique, definitions and examples will also be given in the form of Burrows-
Wheeler transformed strings.

Before the technique is described, we want to recapitulate why the Burrows-
Wheeler transform (BWT) is so useful for data compression. Suppose we have a
long English text containing the word computer a couple thousand times. Given that
the text does not contain too “creative” words, every occurrence of the string puter

will be preceded by the character m, every occurrence of the string mputer will be
preceded by the character o, and every occurrence of omputer will be preceded by
the character c.

All suffixes prefixed by puter will be adjacent to each other (they build an ω-
interval, see Page 11). A similar observation holds true for suffixes prefixed by
mputer and omputer. As the BWT consists of the (cyclically) preceding characters of
the sorted suffixes of a text, within e.g. the puter-interval, the BWT will contain only
the character m. Similarly, this will happen for the mputer-interval with character o
and the omputer-interval with character c.

This clustering effect is the reason why the BWT is so useful for data compression.
Clustered data typically is highly compressible using e.g. run-length encoding, see
Definition 2.9. Summarizing the observations from the running example, suffixes
that are prefixed by puter are always preceded by the string com. As one can imagine,
this is just a natural extension of the observations from above and also tends to occur
often. Now, to come back to the technique of tunneling, tunneling offers a way
to fuse the BWT characters in the puter- , mputer- and omputer-intervals to just
one character. Expressed differently, tunneling fuses all occurrences of com that are
followed by puter to just one occurrence of com.

49

50 T U N N E L I N G T H E O R Y

As we will see later, this helps to improve the compressibility of a BWT. The
starting point of the technique is given by prefix intervals. Prefix intervals describe
the idea that in our running example puter always is preceded by com.

3.1 P R E F I X I N T E RVA L S

In this section, we want to define the meaning of “identical substrings preceding
identical strings” in form of prefix intervals.1 Prefix intervals are related to suffix
intervals, as prefix intervals describe intervals where prefixes preceding the sorted
suffixes share a common suffix. We want to give the broader definition using Wheeler
graphs first, which was originally introduced in [Ala+19] and [BD19].

Definition 3.1 (Prefix interval). Let G = (V, E) be a Wheeler graph with label func-
tion λ. A prefix interval is a collection of h ≥ 2 paths p1 = (v1,1, v1,2, · · · , v1,w), · · · ,
ph = (vh,1, vh,2, · · · , vh,w) of equal length w ≥ 2, fulfilling the following properties:

1. Each node vi,j has in- and out-degree one for all 1 ≤ i ≤ h and 1 ≤ j ≤ w.

2. The paths are all “parallel”, that is, vi+1,j is the immediate successor of vi,j

in terms of the Wheeler graph node order for all 1 ≤ i < h and 1 ≤ j ≤ w.

3. Each path is “equally-labeled”, that is, λ((vi,j, vi,j+1)) = λ((vi′,j, vi′,j+1))

for all 1 ≤ i, i′ ≤ h and 1 ≤ j < w.

The string length of a prefix interval is defined by w− 1, its height by h.

An example of a prefix interval can be found in Figure 3.1. The definition seems a
bit unclear as there is no connection between prefix intervals and prefixes preceding
sorted suffixes and sharing a common suffix. Therefore, we give the following
corollary “translating” Definition 3.1 into the world of the normal BWT.

Corollary 3.2. Let S be a null-terminated string of length n with suffix array SA, LF-
mapping LF and BWT L with Wheeler graph G. Furthermore let 〈w, [i, j]〉 be a pair of a
width w ≥ 2 and an interval [i, j] ⊆ [1, n] with j > i. Then the following statements are
equivalent:

1. S[SA[i]− w + 1..SA[i]− 1] = · · · = S[SA[j]− w + 1..SA[j]− 1].

1 In other publications, prefix intervals are called blocks, but we decided to call them prefix intervals
due to a better understandability of the concept.

3.1 P R E F I X I N T E RVA L S 51

2. L[LFx[i]] = L[LFx[i + 1]] = · · · = L[LFx[j]] for all 0 ≤ x < w− 1.

3. (LFw−1[i], LFw−2[i], . . . , i), . . . , (LFw−1[j], LFw−2[j], . . . , j) is a prefix interval of G.

Proof. 1⇔ 2:
Suppose S[SA[i] − w + 1..SA[i] − 1] = · · · = S[SA[j] − w + 1..SA[j] − 1]. Then
S[SA[i]− 1] = · · · = S[SA[j]− 1] holds iff L[i] = · · · = L[j] because of the definition
of the BWT and the fact that S[SA[i]..n], . . . , S[SA[j]..n] are lexicographically adja-
cent suffixes. The equivalence of the remaining columns L[LFx[i]] = · · · = L[LFx[j]]
and S[SA[i]− 1− x] = S[SA[j]− 1− x] follows analogously using the fact that the
LF-mapping corresponds to a backward step in the normal string.

2⇔ 3:
Follows by the equivalence of the LF-mapping and outgoing edges in the Wheeler
graph as well as the equally labeled columns in the parallel paths and the BWT, see
Corollary 2.16.

The correspondence between prefix intervals in a Wheeler graph and a BWT is
illustrated in Figure 3.1. Our next target is to show how prefix intervals can be
computed efficiently. We therefore make use of the longest common suffix array
which was introduced in [KKP12].

1
y

2
e

3
e

4
p

5$

6
y

7
a

8
a

9
s

10
s

i SA[i] LCS[i] S[1..SA[i]− 1] S[SA[i]..n]
1 10 0
2 7 0
3 2 1
4 6 0
5 1 0
6 5 0
7 8 0
8 3 2
9 9 0

10 4 3

easypeasy $
easype asy$

e asypeasy$
easyp easy$

ε easypeasy$
easy peasy$

easypea sy$
ea sypeasy$

easypeas y$
eas ypeasy$

Figure 3.1: Wheeler graph (left) as well as suffix array, longest common suffix array, prefixes
and sorted suffixes (right) of the string S = easypeasy$. The Wheeler graph
contains the prefix interval (9, 7, 2, 4), (10, 8, 3, 5) colored blue. The corresponding
prefix eas is marked blue (rows 9 and 10). Additionally, the prefixes ea (rows
7 and 8) and e (rows 2 and 3) are marked blue to show that the columns of the
prefix interval correspond to consecutive letters in the BWT, namely s to rows
9-10, a to rows 7-8 and e to rows 2-3. Parts of this image were already published
in [BD19] © 2019 IEEE.

52 T U N N E L I N G T H E O R Y

Definition 3.3 (LCS array). Let S be a null-terminated string of length n with suffix
array SA. The longest common suffix array (LCS-array) is an array of length n defined
as follows:

LCS[i] :=


0 , if i = 0.

max{ l ∈ [0, n] | S[SA[i]− l..SA[i]− 1] =

S[SA[i− 1]− l..SA[i− 1]− 1] } , else.

In other words, the LCS-array describes the length of the longest common suffix
between two prefixes preceding lexicographically adjacent suffixes. Figure 3.1 shows
an example of an LCS-array; the following lemma formulated in [KKP12] can be
used for efficient computation of the array.

Lemma 3.4. Let S be a null-terminated string of length n with BWT L and LF-mapping
LF. Then, for i > 1 the LCS-array can be recursively computed as follows:

LCS[i] =

0 , if L[i] 6= L[i− 1].

LCS[LF[i]] + 1 , if L[i] = L[i− 1].

Proof. Suppose L[i] 6= L[i− 1], then certainly LCS[i] = 0. Now suppose L[i] = L[i− 1].
Then LCS[i] must be greater than zero, as the prefixes share at least one char-
acter. Because of L[i] = L[i − 1], LF[i] = LF[i − 1] + 1 must hold, so following
the LF-mapping leads to the suffixes with one more character. More precisely,
SA[LF[i− 1]] = SA[i− 1]− 1. Because the LF-mapping works with backward steps,
if LCS[LF[i]] = l holds, then LCS[i] = l + 1 must hold too.

The approach for an efficient computation of the LCS-array is thus as follows: We
scan the text from front to back using the inverse LF-mapping LF−1 and meanwhile
keep track of a counter l. Each time we encounter a position j with L[j] = L[j− 1],
we increment the counter whilst we set the counter l to zero if L[j] 6= L[j− 1]. Due
to Lemma 3.4, the value LCS[j] is given by the current counter value l, and the
algorithm requires O(n) time.

The enumeration of all left-maximal and height-maximal prefix intervals2 is possi-
ble using a stack-based approach on the LCS-array. The approach is similar to the

2 Left-maximality means that a prefix interval cannot be extended to the left. Height-maximality means
that it is not possible to add another row to the interval.

3.1 P R E F I X I N T E RVA L S 53

Data: BWT L and inverse LF-mapping LF−1 of a null-terminated string S of length n.
Result: Left-maximal height-maximal prefix intervals in the form 〈w, [i, j]〉 where w is the width and [i, j] are the

boundaries of the rightmost column of the prefix interval.

// compute LCS-array
1 create an array LCS of size n
2 LCS[1]← 0
3 j← LF−1[1]
4 l ← 0
5 for i← 2 to n do
6 if L[j] = L[j− 1] then
7 l ← l + 1

8 else
9 l ← 0

10 LCS[j]← l
11 j← LF−1[j]

// enumerate left-maximal height-maximal prefix intervals
12 initialize an empty stack s
13 push element 〈1, 0〉 on the stack s
14 for i← 2 to n do
15 〈lb, l〉 ← top of stack s // l is the string width of the prefix interval
16 while l > LCS[i] do
17 pop topmost element of stack s
18 report prefix interval 〈l + 1, [lb, i− 1]〉
19 〈lb, l〉 ← top of stack s

20 if l < LCS[i] then
21 push element 〈i− 1, LCS[i]〉 on the stack s

// pop remaining elements from stack
22 while stack s has more than one element do
23 〈lb, l〉 ← top of stack s
24 report prefix interval 〈l + 1, [lb, n]〉
25 pop topmost element of stack s

Algorithm 3.1: Enumeration of all left-maximal height-maximal prefix intervals. Lines
1–11 compute the LCS-array using Lemma 3.4, lines 12–25 use a stack-based approach to
enumerate the intervals similar to LCP-intervals [Kas+01].

enumeration of LCP intervals as described in [Kas+01]. The key idea is to scan the
LCS from top to bottom, meanwhile pushing the left boundary and string width of
prefix intervals onto a stack. Once the right boundary of a prefix interval is reached,
the interval is popped from the stack.

To be more precise, the left boundary of a prefix interval is detected if the string
width of the topmost prefix interval on the stack is smaller than the current LCS[i]-
value. This means that a new prefix interval with left boundary i − 1 and string
width LCS[i] has been detected. The end of a prefix interval can be detected if its
string width is smaller than the current LCS[i]-value. This then means that all LCS-
values between the left boundary and i − 1 are equal or greater than the current
string width, but the interval cannot be height-extended. The stack maintains the
invariant that the topmost prefix interval on the stack has a bigger string width

54 T U N N E L I N G T H E O R Y

than all other prefix intervals on the stack. Therefore, all prefix intervals ending at
a certain position can be popped from the stack using a loop. As this procedure
pushes at most n intervals onto the stack, at most n elements are popped from the
stack. This implies an O(n) run-time.

We refer to [Kas+01] for more details on the interval enumeration using the LCS-
array. Instead, we want to represent a combination of both LCS computation and
prefix interval enumeration given in Algorithm 3.1 requiring O(n) run-time.

3.2 T U N N E L I N G

After introducing prefix intervals, we now want to present the tunneling technique.
As described in the beginning of this chapter, the idea is to fuse identical strings
preceding consecutive lexicographically sorted suffixes. We first want to give a
definition of tunneling, similar to the ones published in [Bai18] and [BD19].3

Definition 3.5 (Tunneling). Let G = (V, E) be a Wheeler graph with label function
λ, and let p1 = (v1,1, · · · , v1,w), · · · , ph = (vh,1, · · · , vh,w) be the node-disjoint paths
of a prefix interval of G with width w and height h.

The process of tunneling the prefix interval is defined as fusing the nodes of each
column of the prefix interval as well as the edges between two adjacent columns.
Define F := {v2,1, . . . , v2,w, . . . , vh,1, . . . , vh,w}, then the tunneled Wheeler graph G̃ =

(Ṽ, Ẽ) with label function λ̃ is defined as

Ṽ := V \ F,

Ẽ := E \ ((F×V) ∪ (V × F))

∪ { (u, v1,1) | u ∈ V, (u, v1,j) ∈ E for some 1 ≤ j ≤ h }
∪ { (vw,1, v) | v ∈ V, (vw,j, v) ∈ E for some 1 ≤ j ≤ h },

λ̃(u, v) :=


λ(u, v1,j) , if v = v1,1 and (u, v1,j) ∈ E.

λ(vw,j, v) , if u = vw,1 and (vw,j, v) ∈ E.

λ(u, v) , else.

3 Definition 3.5 differs from the published definitions as the original definitions required that nodes
from the leftmost and rightmost column of a prefix interval must not be fused. This limiting require-
ment is unnecessary, allowing tunnels to be longer.

3.2 T U N N E L I N G 55

1
y

2
e

3
e

4
p

5$

6
y

7
a

8
a

9
s

10
s

9

10

7

8

2

3

4

5

y

y

s

s

a

a

e

e

p

$

y

y

s a e
p

$

1
y

2
e

3

4
y

5
a

6
s

$
p

Figure 3.2: Wheeler Graph of BWT yeep$yaass (left) with prefix interval
(9, 7, 2, 4), (10, 8, 3, 5) colored blue. Tunneling of the prefix interval inside
the graph (center), tunneled Wheeler graph (right). The numbering of nodes
illustrates the underlying Wheeler graph order in both graphs. This image was
already published in [BD19] © 2019 IEEE.

An example of a tunneled Wheeler graph can be found in Figure 3.2. The attentive
reader may have noticed that tunneling requires the supplementary condition of
node-disjoint paths in a prefix interval. The simple, albeit incomplete, answer is
that tunneling would cut out the common subpaths of node-sharing paths, and
thus would produce a shortened but differently shaped Wheeler graph. To give a
complete answer (which is done in the next section), we need a better understanding
of the effect of tunneling, which is given in the following theorem.

Theorem 3.6. Let G = (V, E) be a Wheeler graph with label function λ, and let p1 =

(v1,1, . . . , v1,w), . . . , ph = (vh,1, . . . , vh,w) be the node-disjoint paths of a prefix interval of
G with width w and height h.

Let G̃ = (Ṽ, Ẽ) be the tunneled Wheeler graph with label function λ̃ emerging by
tunneling the prefix interval p1, . . . , ph. Then G̃ is a Wheeler graph.

Proof. We repeat the conditions for two edges e = (u, v) and e′ = (u′, v′) in a Wheeler
graph, in an equivalent reversed implication order, see Definition 2.15.

v′ � v ⇒ λ(e′) ≥ λ(e),

v′ � v ⇒ (λ(e′) 6= λ(e)) ∨ (u′ � u).

Define the node ordering ≺̃ of G̃ to be equal to the node ordering ≺ of G, except
that the nodes F := {v2,1, . . . , v2,w, . . . , vh,1, . . . , vh,w} are removed from the ordering.
G̃ is created from G by removing nodes of F and edges in F, as well as moving the

56 T U N N E L I N G T H E O R Y

endpoints of incoming edges from vj,1 to v1,1 and the starting points of outgoing
edges from vj,w to v1,w for all 1 < j ≤ h.

For all edges neither incident to v1,1 nor adjacent to v1,w the relative node ordering
≺̃ as well as the edge labels remain unchanged. Therefore it suffices to show that the
conditions are fulfilled for edge pairs involving incoming edges of v1,1 and outgoing
edges of v1,w.

Let e = (u, v1,1) be any incoming edge of v1,1 and let e′ = (u′, v′) be any other
edge of Ẽ. W.l.o.g. assume v′ �̃ v1,1, and let vj,1 be the node such that (u, vj,1) ∈ E.
Because the nodes v1,1, . . . , vh,1 are adjacent in terms of the node order ≺ in G and
the node order ≺̃ is derived from ≺ by, in addition to other removals, removing
the nodes v2,1, . . . , vh,1, the node order v′ � vj,1 � v1,1 holds. As the edges (u, v1,1)

and (u, vj,1) carry the same label and have identical predecessors, the necessary
conditions between e and e′ are inherited from the conditions between (u, vj,1) and
e′.

In the special case that λ(e) = λ(e′) and u′ = v1,w holds, let vk,w be the unique
node such that (vk,w, v′) ∈ E holds. W.l.o.g. assume v′ �̃ v1,1. Then, analogously to
the discussion in the last paragraph, one can show that u′ �̃ u must hold because
vk,w � u holds in the old graph G. This ensures the necessary conditions between
incoming edges of v1,1 and outgoing edges of v1,w.

An analogous discussion as above shows that the Wheeler graph edge conditions
also are fulfilled for the outgoing edges of v1,w.

Similar versions of Theorem 3.6 appeared in [Bai18] for the BWT and in [Ala+19]
for Wheeler graphs. The theorem confirms our assumption that tunneling in some
way leaves the graph intact. Moreover, using the result of Theorem 3.6, we can
iteratively apply Definition 3.5 to a Wheeler graph, allowing us to tunnel multiple
prefix intervals of a Wheeler graph.

3.2.1 Tunneled BWT computation

The next goal will be to show an algorithm which is able to tunnel a normal
BWT. A simple approach would be as follows: given a node-disjoint prefix interval
〈w, [i, j]〉, we start by fusing the nodes of the columns of the prefix interval, namely
[i, j], [LF[i], LF[j]], . . . , [LFw−1[i], LFw−1[j]]. This produces a multigraph which is quite
similar to the desired graph, the difference being that the graph contains redundant

3.2 T U N N E L I N G 57

9

10

7

8

2

3

4

5

y

y

s

s

a

a

e

e

p

$

y

y

s a e

s a e

p

$

y

y

s a e
p

$

i Dout[i]L[i] Din[i]
1 y 1 1
2 e 1 1
3 e 1 1
4 p 1 1
5 $ 1 1
6 y 1 1
7 a 1 1
8 a 1 1
9 s 1 1
10 s 1 1
11 1 1

Dout[i]L[i] Din[i]
y 1 1
e 1 1
e 0 0
p 1 1
$ 0 0
y 1 1
a 1 1
a 0 0
s 1 1
s 0 0

1 1

Dout[i]L[i] Din[i]
y 1 1
e 1 1
p 1 1
$ 0 1
y 1 1
a 1 1
s 1 0

1 1

Figure 3.3: Systematic tunneling of the 〈4, [9, 10]〉 prefix interval from Figure 3.2. The left
column shows the prefix interval of the Wheeler graph as well as its succinct
representation. The middle column shows the prefix interval and the succinct
graph representation after fusing the nodes in the columns of the prefix interval,
where redundant edges are colored gray in both the prefix interval and the
succinct representation. The right column shows the prefix interval and the
succinct representation after removing the redundant edges. Parts of this image
were already published in [BD19] © 2019 IEEE.

equally-labeled edges, see Figure 3.3. Once we fused those nodes, we fuse the edges
with common start and end node.

Translated to the BWT, this can be performed as follows: to fuse nodes, we set
Din[LFk[i + 1]..LFk[j]] = 0j−i and Dout[LFk[i + 1]..LFk[j]] = 0j−i for each column k ∈
[0, w− 1]. Regarding the succinct representation of Wheeler graphs from Definition
2.19, this produces the multigraph as mentioned above. Afterwards, we have to
remove redundant edges with a common start and end node, or put differently,
reduce the in- and outdegrees of the affected nodes. More precisely, the outdegree of
the first node must be reduced to one, the indegree of the last node must be reduced
to one, and the out- and indegrees of all other nodes must be reduced to one. To fuse
the edges, we have to remove the entries [i + 1, j] (first node) and [LFk[i + 1], LFk[j]]
for 1 ≤ k < w− 1 (inner nodes) from Dout and also from L. Additionally, the entries
[LFk[i + 1], LFk[j]] for 1 ≤ k < w− 1 (inner nodes) and [LFw−1[i + 1], LFw−1[j]] (last
node) have to be removed from Din. This could be done by e.g. marking the above

58 T U N N E L I N G T H E O R Y

Data: BWT L and LF-mapping LF of a string S of length n, set I of prefix intervals such that any pair of paths from
two prefix intervals are node-disjoint.

Result: Bit-vectors Din and Dout containing markings of columns from prefix intervals in I.

1 create two bit-vectors Din and Dout of size n + 1 filled with ones
2 foreach 〈w, [i, j]〉 ∈ I do
3 h← j− i + 1
4 x ← i
5 for k← 0 to w− 2 do
6 Din[x + 1..x + h]← 0h−1

7 x ← LF[x]
8 Dout[x + 1..x + h]← 0h−1

Algorithm 3.2: Marking of columns from disjoint prefix intervals.

mentioned entries in two separate bit-vectors, and performing an additional top-to-
bottom traversal of both bit-vectors whereby trimming Dout, L and Din appropriately,
see Figure 3.3.

By reviewing the procedure from above, an optimization is possible as follows:
instead of fusing nodes and marking edges to be removed separately, the steps can
be merged by setting Din[LFk[i + 1]..LFk[j]] = 0j−i and Dout[LFk+1[i + 1]..LFk+1[j]] =
0j−i for all 0 ≤ k < w− 1. By doing so, the outdegrees for all nodes, except for the
first, as well as the indegree for all nodes, except for the last, are correct. Additionally,
the positions of zero markings in Din and the entries to be removed from Dout and
L are identical. The same holds true for zero markings in Dout and entries to be
removed from Din. Thus, if we scan Din and Dout from top to bottom after placing
the markings, the desired Wheeler graph can be obtained by deciding whether to
keep an entry depending on the zero-markings in both bit-vectors. Algorithms 3.2
and 3.3 thus show a way to tunnel multiple prefix intervals at once, given that the
paths of all prefix intervals are disjoint.

An interesting special case of tunneling occurs when two adjacent prefix in-
tervals are tunneled. Let 〈w, [i, j]〉 and 〈w̃, [ĩ, j̃]〉 be two prefix intervals such that
LFw[k] ∈ [ĩ, j̃] holds for any k ∈ [i, j]. Expressed differently, the first column of
〈w̃, [ĩ, j̃]〉 directly follows the last column of 〈w, [i, j]〉. In this case, if the contact area
[LFw[i], LFw[j]] ∩ [ĩ, j̃] of both prefix intervals contains at least two nodes, tunneling
both prefix intervals leads to a tunneled Wheeler graph with multi-edges between
both tunnels, see Figure 3.4. This in a way explains why Wheeler graphs are defined
to be multigraphs.

3.2 T U N N E L I N G 59

Data: BWT L of a string S of length n, prefix interval marking bit-vectors Dout and Din as created by Algorithm 3.2.
Result: Succinct representation L̃, Din and Dout of the tunneled Wheeler graph (or analogously the tunneled BWT).

1 let L̃ be a string of size rankDout (1, n)
2 i← 1 // output position in Dout and L̃
3 j← 1 // output position in Din

4 for k← 1 to n do
5 if Din[k] = 1 then
6 Dout[i]← Dout[k]
7 L̃[i]← L[k]
8 i← i + 1

9 if Dout[k] = 1 then
10 Din[j]← Din[k]
11 j← j + 1

12 shorten Dout to size i and set Dout[i]← 1

13 shorten Din to size j and set Din[j]← 1

Algorithm 3.3: Tunneling of a BWT using the markings of prefix intervals from Algo-
rithm 3.2. In the case that L can be overwritten, L̃ can be replaced with L by removing
line 1 and shortening L to size i− 1 before line 12.

9

10

7

8

2

3

4

5

y

y

s

s

a

a

e

e

p

$
6 5 2 3

y

y

s
a

a

e
p

$

Figure 3.4: Tunneling of adjacent prefix intervals produces a multigraph. The left-hand side
shows the prefix intervals 〈2, [9, 10]〉 and 〈2, [2, 3]〉marked in blue for the running
example. On the right, a snippet of the resulting tunneled Wheeler graph with
multiple edges between nodes 5 and 2 is shown. The numbering of the nodes
illustrates the underlying Wheeler graph order. Parts of this image were already
published in [BD19] © 2019 IEEE.

3.2.2 Backward steps

Another important property of a tunneled Wheeler graph (or at least its succinct
representation) is that a walk in the normal Wheeler graph can be emulated, giving
that some order between the edges of the graph is present and is not modified by the
process of tunneling. The key idea is that tunneling does not modify the structure
of the graph, except for the fusion of parallel node-disjoint paths. During a walk,
assume we detect the start of a tunnel and enter the tunnel at the e-th edge regarding
the relative order of the incoming edges of the node. As the fused paths in the
original prefix interval are equally labeled, we can follow the fused path and thereby
obtain the equal path label. At the end of the tunnel, if we leave the tunnel at the
e-th edge regarding the relative order, a walk through the corresponding e-th path in
the original graph has been emulated. This holds true because in the original prefix
interval, paths are parallel, so entering a prefix interval on the e-th row automatically

60 T U N N E L I N G T H E O R Y

Data: Succinct representation L, Din and Dout of a tunneled BWT as computed from Algorithm 3.3, index i of an
edge in Dout, tunnel offset e.

Result: Index i of the next edge in Dout and tunnel offset e after an emulated backward step in the normal BWT.

1 function backwardstep(i, e)
// follow i-th edge using a normal backward step and determine node rank

2 i← CL[L[i]] + rankL(L[i], i)
3 nr ← rankDin

(1, i)

// check if a tunnel starts and save offset to topmost entry edge
4 if Din[i] = 0 or Din[i + 1] = 0 then
5 e← i− selectDin

(1, nr)

// switch to outgoing edges of node nr
6 i← selectDout (1, nr)

// check if a tunnel ends and use offset to jump to correct outgoing edge
7 if Dout[i + 1] = 0 then
8 i← i + e
9 e← 0

10 return 〈i, e〉

Algorithm 3.4: Backward step in a tunneled BWT.

implies that the prefix interval is left on the e-th row on this path. We now formulate
an alternative way of a backward step for a tunneled BWT in Algorithm 3.4.

The algorithm performs a backward step using the two variables i and e, where i
is the index of the next outgoing edge of the current node whilst e stores the offset
to the uppermost entry edge of a tunnel in the case that the tunnel is traversed. As
shown in the algorithm, the start or end of a tunnel can be detected by checking
the bit-vectors Din and Dout for zeros. As a reminder, Definition 2.19 stated that
following the i-th edge in the succinct representation of a Wheeler graph can be
done using the formula

i← selectDout(1, rankDin
(1, CL[i] + rankL(L[i], i))).

Figure 3.5 shows how the emulation of a backward step in a tunneled BWT is
performed. We now formulate a corollary, finishing this section by clarifying that
a tunneled Wheeler graph in a sense is as powerful as a normal Wheeler graph.
Similar statements as given by Corollary 3.7 appeared in [Bai18] and [Ala+19].

Corollary 3.7. Let S be a null-terminated string of length n. Let L, Dout and Din be the
tunneled BWT emerging by tunneling a set P of prefix intervals in the BWT of S such that
any pair of parallel paths in the prefix intervals of P are node-disjoint.

Starting from the BWT index i = selectL($, 1) and e = 0 and repeating the steps

1. output character L[i]

2. set 〈i, e〉 ← backwardstep(i, e)

3.2 T U N N E L I N G 61

exactly n times using the function backwardstep from Algorithm 3.4 yields the reversed
string SR of the original string S.

Corollary 3.7 shows that a tunneled BWT is able to reproduce the original string
from which it was built. By encoding the components L, Dout and Din using wavelet
trees from Section 2.3, this reproduction requires O(n log σ) time.

Let us shortly recapitulate what tunneling means: tunneling is the fusion of parallel
equally labeled paths in Wheeler graphs. As Theorem 3.6 shows, a tunneled Wheeler
graph is still a Wheeler graph. Therefore, we are not only able to tunnel a normal
BWT, but also other string data structures describable as a Wheeler graph. Moreover,
if we can ensure that the succinct representation of a Wheeler graph has some edge
ordering which is not changed by tunneling, edge navigation in the original Wheeler
graph can be emulated in the tunneled Wheeler graph. The key idea is that if we
enter a tunnel on the e-th incoming edge, leaving the tunnel at the e-th outgoing
edge leads one back to the correct node in the original graph. This gives tunneling
its name: once we enter a tunnel, we keep track of the path on which we entered it.
When leaving the tunnel, we just head back to the original path and can proceed as
usual.

DoutL Din F
y 1 1 $
e 1 1 a

e 1 1 a

p 1 1 e

$ 1 1 e

y 1 1 p

a 1 1 s

a 1 1 s

s 1 1 y

s 1 1 y

1 1

DoutL Din F
y 1 1 $
e 1 1 a

p 1 1 e

$ 0
y 1 1 p

a 1 1 s

s 1 1 y

0 y

1 1

Figure 3.5: Emulated backward step. The left side shows the succinct representation (includ-
ing the F-column) of the normal Wheeler graph, while the right side shows the
representation (also including F) of the tunneled graph of the running example.
Performing four backward steps in the normal BWT beginning from the second
y in L leads us to entry 5 with L[5] = $. Now suppose we perform four backward
steps in the tunneled BWT starting from the second y in L. When entering the
tunnel (first backward step), the offset e = 1 is saved. After 3 backward steps,
the end of the tunnel is reached, and thus the offset e = 1 is added to the current
position i = 3, thus pointing to entry 4 with L[4] = $.

62 T U N N E L I N G T H E O R Y

3.3 O V E R L A P P I N G S

The last section introduced the technique of tunneling, requiring that a set of prefix
intervals to be tunneled must be node-disjoint. Within this section, we will see that
this restriction can be relaxed: if two prefix intervals overlay each other in a special
way, it is still possible to tunnel both prefix intervals using iterative tunneling, see
Figure 3.6 for an example.

Definition 3.8. Let G = (V, E) be a Wheeler graph, let p1, . . . , phP be the node-
disjoint paths of a prefix interval P in G with width wP, and let q1, . . . , qhQ be the
node-disjoint paths of another prefix interval Q in G with width wQ such that w.l.o.g.
wP ≥ wQ.

We say that P and Q are overlayable if the graph G̃ emerging by tunneling P in G
contains Q as a prefix interval. In more detail, the set

{q1} ∪ { qi | 1 < i ≤ hQ such that qi is node-disjoint with the paths p2, . . . , phP}

is a prefix interval in G̃.

Definition 3.8 states that two prefix intervals are overlayable if the shorter prefix
interval remains in the graph after tunneling the longer one. It also makes sense
to tunnel the longer before the shorter prefix interval: assume one would tunnel
the shorter prefix interval in Figure 3.6 before the longer one. Then, the start- and
endpoint of the fused path would no longer have in- respectively outdegree of one,
and thus the longer prefix interval would no longer meet the conditions of a prefix
interval from Definition 3.1.

t

t

u

u

n

n

n

n

e

e

l

r

u n n o

t

t

u n n e
l

r

u n n o

t

t
u

n n
e

l

r

u o

Figure 3.6: Iterative tunneling of two overlapping prefix intervals. The example is fictive
but shows that the prefix intervals must “cross overlap” each other. According
to Definition 3.5, correct iterative tunneling then can be performed by tunneling
the longer before the shorter prefix interval. A similar version of this image was
already published in [BD19] © 2019 IEEE.

3.3 O V E R L A P P I N G S 63

A noteworthiness of Definition 3.8 is that the uppermost path q1 of the shorter
prefix interval must “survive” the tunneling process of the longer prefix interval, i.e.
it must be part of the remaining prefix interval. Theoretically, it would be possible
to remove this extra requirement, but there is a pragmatic reason why one should
not do this. The uppermost path of a prefix interval is the “tunnel lane” when the
interval is tunneled. The “tunnel lane” has the property that all backward steps
performed in the tunnel are performed only in this lane. Therefore, ensuring that
the tunnel lane remains intact ensures a kind of a tunnel planning security when
a couple of prefix intervals are tunneled. Analogously, when thinking of tunnel
planning in the real world, it takes less effort to modify the entries of a tunnel than
replanning the tunnel lane: a replanned tunnel lane demands a few new planning
steps, like new geological studies.

A weakness of Definition 3.8 is that it describes overlayable prefix intervals in an
indirect way. Given two prefix intervals, one has to tunnel the higher prefix interval
and check the remaining paths to see if the intervals are overlayable. The next
theorem will eliminate this vagueness by formulating clear conditions of overlayable
prefix intervals verifiable before any prefix interval is tunneled.

Theorem 3.9. Let G = (V, E) be a Wheeler graph, let p1, . . . , phP be the node-disjoint
paths of a prefix interval P in G with width wP, and let q1, . . . , qhQ be the node-disjoint
paths of another prefix interval Q in G with width wQ such that w.l.o.g. wP ≥ wQ.

Then, P and Q are overlayable if and only if

1. q1 and at least one other path of Q are node-disjoint to p2, . . . , phP .

2. no path of Q contains a start- or endpoint of a path from P.

Proof.

“⇐”: Tunneling the prefix interval P removes the paths p2, . . . , phP . As no path of
Q contains a start- or endpoint of any path in P, each path of Q is either a
subpath of a path in P (the nodes of such a path are fully removed by tunneling
P except for subpaths of p1) or node-disjoint to all paths of P (such a path
“survives” tunneling P).

All nodes of the tunnel-surviving paths of Q must have in- and outdegrees of
exactly one, because tunneling modifies no node degrees except for the inde-
gree of the starting point and the outdegree of the endpoint of p1. Additionally,
as tunneling does not modify the relative order of nodes or labels of edges

64 T U N N E L I N G T H E O R Y

(see Theorem 3.6), the tunnel-surviving paths of Q all are parallel and equally
labeled.

Finally, as q1 and at least one other path of Q are node-disjoint to p2, . . . , phP ,
q1 and at least one more path survives tunneling and thus induces a prefix
interval in the tunneled graph.

“⇒”: Suppose there are less than two paths being node-disjoint to p2, . . . , phP . Then,
less than two paths survive tunneling (p2, . . . , phP are removed) and thus do
not fulfill the condition of a prefix interval which must contain at least two
parallel paths.

Furthermore, suppose a path in Q contains a start- or endpoint of a path from
P. Let qi be the uppermost of such paths in Q. Then, qi must survive tunneling
(i.e. it cannot share nodes with some path pj with j > 1), because otherwise, as
the paths in Q run in parallel and q1 must be node-disjoint to paths of P (see
discussion above), there would be a path qk above qj (k < j) that contains a
start- or endpoint of a path in P. This is a contradiction to the assumption that
qi is the uppermost such path. Clearly, qi must contain the start- or endpoint of
p1, as it is the uppermost path. Now, as qi survives tunneling and the degree of
the endpoints of p1 are modified, after tunneling P, there is a node in qi with
in- or outdegree of not exactly one, which contradicts the conditions of a prefix
interval.

An alternative formulation of Theorem 3.9 is as follows: If two prefix intervals
share nodes, both are overlayable if the shape of the overlap builds a cross (“cross
overlay”) such that the shorter prefix interval is higher and does not touch the
endpoints of the longer interval, see Figure 3.6.

Before we proceed with algorithms for tunneling overlayable prefix intervals, we
will briefly review the prerequisites of the tunneling process from Definition 3.5. One
prerequisite of the definition requires that each pair of paths from a prefix interval
must be node-disjoint. Using Theorem 3.9, we see that this prerequisite is reasonable.
Given a prefix interval with node-disjoint paths, one can split the prefix interval
vertically at any column and obtains two new prefix intervals which are overlayable.
Now, given a prefix interval that contains a common node in two different paths,
one may split the prefix interval vertically, anywhere between the columns where
the common node is contained. The two emerging prefix intervals then will share

3.3 O V E R L A P P I N G S 65

1
a

2
n

3
n

4b

5 $

6
a

7
a

1 2

3

6

7

3

4 5

n

n

a

a

a

b

a n a b

1
a

2
n

3b

4 $

5
a

Figure 3.7: Tunneling of a self-overlapping prefix interval. The left side shows the Wheeler
graph of the BWT of the string S = banana$ with a self-overlapping prefix
interval (see node 3). The middle shows the fusion of the parallel paths. As both
paths contain the node 3, start and end of the prefix interval also are fused. The
right side shows the created Wheeler graph, where one repetition of an has been
removed by tunneling.

start- and endpoints, and thus are not overlayable, indicating that it is not reasonable
to tunnel the self-overlapping prefix interval. Additionally, as Figure 3.7 shows,
tunneling such an interval leads to a loss of the repeated paths. As a consequence, it
is no longer possible to recover the original string using the tunneled Wheeler graph.

Next, we would like to discuss how the succinct representation of a tunneled
Wheeler graph can be constructed when overlayable prefix intervals are tunneled.
Also, we will show a modified approach to perform backward steps in the graph. The
construction of a tunneled Wheeler graph using pairwise overlayable prefix intervals
is quite straightforward. We run Algorithms 3.2 and 3.3 without any modification,
except that the input prefix intervals are pairwise overlayable instead of pairwise
node-disjoint.

Formulating a backward step in a tunneled Wheeler graph is a bit more compli-
cated: it is possible to enter a tunnel inside of another tunnel, see e.g. Figure 3.6.
However, as we know that the overlappings build a cross, we also know that if we
detect the end of a tunnel, it must be the end of the last entered tunnel whose end
was not found yet. Therefore, we can use a stack to store the tunnel entry offsets:
when the end of a tunnel is detected, the corresponding tunnel entry offset can
be found at the top of the stack. This allows one to match tunnel starts and ends
appropriately. Algorithm 3.5 shows such a modified backward step, which is quite
similar to the original backward step as presented in Algorithm 3.4 except for the
use of a stack.

66 T U N N E L I N G T H E O R Y

Data: Succinct representation L, Din and Dout of a tunneled BWT as computed from Algorithm 3.3 using pairwise
overlayable prefix intervals, index i of an edge in Dout, stack s with tunnel offsets.

Result: Index i of the next edge in Dout and stack s with tunnel offset after an emulated backward step in the
normal BWT.

1 function backwardstep(i, s)
// follow i-th edge using a normal backward step and determine node rank

2 i← CL[L[i]] + rankL(L[i], i)
3 nr ← rankDin

(1, i)

// check if a tunnel starts and save offset to topmost entry edge
4 if Din[i] = 0 or Din[i + 1] = 0 then
5 e← i− selectDin

(1, nr)
6 push e on the stack s

// switch to outgoing edges of node nr
7 i← selectDout (1, nr)

// check if a tunnel ends and use offset to jump to correct outgoing edge
8 if Dout[i + 1] = 0 then
9 e← top of stack s

10 i← i + e
11 pop topmost element of stack s

12 return 〈i, s〉

Algorithm 3.5: Backward step in a tunneled BWT with tunnel overlappings.

Corollary 3.10. Let S be a null-terminated string of length n. Let L, Dout and Din be the
tunneled BWT emerging by tunneling a set P of prefix intervals in the BWT of S̃ such that
any pair of prefix intervals of P are overlayable.

Starting from the BWT index i = selectL($, 1) and an empty stack s and repeating the
steps

1. output character L[i]

2. set 〈i, s〉 ← backwardstep(i, s)

exactly n times using the function backwardstep from Algorithm 3.5 yields the reversed
string SR of the original string S.

3.4 H A R D N E S S O F T U N N E L P L A N N I N G

As of now, we have seen what tunneling means, how prefix intervals can be com-
puted, and under which conditions prefix intervals are allowed to overlap in order
to be suitable for iterative tunneling. An important issue, however, is still missing:
tunnel planning. Tunnel planning means, that given all prefix intervals of a BWT (or
a Wheeler graph), one must decide which prefix intervals are worth being tunneled.

As we will see in the next chapter, it is not always worth it to tunnel all prefix
intervals. Each tunneled prefix interval produces an extra zero-run in the bit-vectors

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 67

Dout and Din, and therefore reduces their compressibility. Seen differently, each
tunnel produces some kind of cost, apart from the benefit that the length of L, Dout

and Din is decreased. Therefore, it is preferable to tunnel big prefix intervals instead
of small ones, because their benefit-cost ratio is better than that of small ones. In
some cases the benefit-cost ratio of prefix intervals is less than one, so it is not worth
it to tunnel such a prefix interval. We will see such cases in the next chapter.

For now, we want to introduce two problems expressing the planning issue. The
following problem was also stated in [BD19].

Problem 3.11 (Wheeler graph prefix interval cover). Let G = (V, E) be a Wheeler
graph, let k be a positive integer and let P be the set of all prefix intervals contained
in G.

The Wheeler graph prefix interval cover problem asks if a subset P ⊆ P of size
|P| ≤ k exists such that each node v ∈ V that is contained in a prefix interval of P
also is contained in a prefix interval of P.

To put it simply, the Wheeler graph prefix interval cover problem asks if all
prefix intervals in some Wheeler graph G can be fully overlaid/covered by a set
of at most k prefix intervals. It therefore states the problem of achieving maximal
benefit (all nodes contained in prefix intervals are covered by the set P) with the
smallest possible costs. For our running example from Figure 3.1, the prefix interval
of the string eas covers all other prefix intervals in the graph. A slight but more
practice-oriented version of the problem is given by the following:

Problem 3.12 (Wheeler graph prefix interval coverage). Let G = (V, E) be a Wheeler
graph, let k and m be two positive integers and let P be the set of all prefix intervals
contained in G.

The Wheeler graph prefix interval coverage problem asks if a subset P ⊆ P of size
|P| ≤ k exists such that at least m nodes v ∈ V are contained in the prefix intervals
of P.

The Wheeler graph prefix interval coverage problem is more practice-oriented
because it enables us to ask for a certain benefit-cost ratio of prefix intervals to be
tunneled. The ratio can be thought of as a fraction between the number of nodes m
and the number of tunneled prefix intervals k. The Problems 3.11 and 3.12 explicitly
do not ask for an optimal tunnel planning. However, it is easy to see that optimal
tunnel planning must be at least as difficult as solving the problems. For example,
assume we would be able to find the minimal value of k∗ solving the Wheeler graph

68 T U N N E L I N G T H E O R Y

prefix interval cover problem. In this case, we could also implicitly solve the Wheeler
graph prefix interval cover problem as follows:

1. compute the minimal value k∗ solving Problem 3.11.

2. for a given value k, Problem 3.11 is solvable if and only if k ≥ k∗ holds.

Therefore, asking for the minimal value solving Problem 3.11 must be at least as
hard as solving Problem 3.11 itself.

As we will see in this section, both problems are very difficult. More precisely, the
problems turn out to be NP-complete. Therefore, tunnel planning turns out to be a
difficult task. Before we give proofs on the hardness of the problems, we want to
introduce the concepts behind the hardness of a problem, see e.g. [GJ90] for a more
detailed description.

3.4.1 Introduction to complexity classes

First of all, we need some basic knowledge of complexity classes. The class P is a class
that contains decision problems which are deterministically solvable in polynomial
time. This means that a a problem-solving deterministic algorithm exists whose
worst-case run-time is bound by a polynomial function that depends on the input
size. For example, given a Wheeler graph G, the problem of determining if some
paths p1, . . . , ph form a prefix interval in the graph belongs to P. One is able to
describe an algorithm which takes the paths as input, checks the conditions of a
prefix interval from Definition 3.1, and then returns true or false. As the worst-case
run-time of such an algorithm is polynomial bounded by the sum of the lengths of
all paths, and the algorithm works completely deterministic, the problem must be in
P.

The class NP is a complexity class which contains decision problems which are
non-deterministically solvable in polynomial time. This means that a problem-
solving non-deterministic algorithm exists whose worst-case run-time is bounded by
a polynomial function that depends on the input size. Non-deterministic algorithms
seem a bit confusing at first glance, as those algorithms work like an oracle: during
their execution, those algorithms guess some random bits in the right manner, and
check that the result is appropriate. Typically, those algorithms work by a guess and
check principle. For example, a non-deterministic algorithm for the Wheeler graph
prefix interval cover problem can be formulated as follows:

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 69

1. Guess n random paths.

2. Check if the paths form at most k prefix intervals in the graph.

3. Check if all other prefix intervals in the graph are covered by the prefix inter-
vals.

Surprisingly, due to the used non-determinism, this algorithm always gives the right
answer to the Wheeler graph prefix interval cover problem. Also, each step requires
at most polynomial-time, so the Wheeler graph prefix interval cover problem belongs
to the class NP.

It is clear that P is a subclass of NP (P ⊆ NP) as each deterministic algorithm is a
non-deterministic algorithm which ignores the oracle function. Although strongly
believed, it is not yet clear whether P is a proper subclass of NP (P ⊂ NP). This
issue is known as the currently unsolved “P vs NP Problem”, and is one of seven
Millennium problems [Cla00]. If we assume that P 6= NP holds, problems from
NP \ P would not be solvable in polynomial time. The best thing that one could
do in this case (besides some problem-specific heuristics) would be to simulate
non-deterministic algorithms using deterministic ones in a brute force manner: try
out all possible bit combinations of the random bits used in the non-deterministic
algorithm, and check if at least one such combination survives the check-phase.
This makes the worst-case run-time of such algorithms exponential and therefore is
limited to only very small instances of the problem.

The hardest problems in NP are the so-called NP-complete problems. In the case
that any of these problems can be solved in polynomial time, all problems in NP can
be solved in polynomial time. Thus, P = NP would hold. The first such problem, the
satisfiability problem, was introduced by Stephen A. Cook [Coo71], before Richard
M. Karp presented another 21 such problems [Kar72]. The basic concept of NP-
hardness is given by polynomial-time reductions. Assume we have two decision
problems A and B. A polynomial-time reduction from A to B is a function f that in
polynomial time can convert an input x for problem A to an input f (x) for problem
B. Additionally, for each solution x of problem A, f (x) is a solution of problem B,
and vice versa. More formally, by writing x ∈ A for every solution x of problem A,
this can be expressed as

A ≤p B :⇔ there exists a polynomial-time computable function f

such that x ∈ A⇔ f (x) ∈ B for every possible input x.

70 T U N N E L I N G T H E O R Y

The term A ≤p B means that A can be reduced to B in polynomial time. Conse-
quently, if B is solvable in polynomial time, then so is A by converting any input x
using the function f and checking if f (x) ∈ B in polynomial time. An NP-complete
problem A is characterized as a problem which

1. is contained in the class of NP-problems.

2. is at least as hard as all other problems in NP, that is, L ≤p A for all problems
L contained in NP.

As described above, the second characterization ensures that all problems of NP
can be solved in polynomial time once an NP-complete problem is solvable in
polynomial time. As this characterization is hard to prove in practice, another simpler
characterization is given as follows: let A be the problem under consideration, and
let B be an NP-complete problem. Then, A is NP-complete if

1. A is contained in the class of NP-problems.

2. A is at least as hard as B, that is, B ≤p A.

As sketched above in the comparison of the Wheeler graph prefix interval cover
problem and the minimal value solving the Wheeler graph prefix interval cover
problem, the second comparison ensures that A is as hard as B. This also ensures that
the second characterization of NP-complete problems is fulfilled: for any language L
from NP, we can convert the input to some input of B, and then to an input of A. As
L then is solvable iff A is solvable, we obtain L ≤p A.

3.4.2 NP-completeness of Wheeler graph prefix interval cover

After this excursion on complexity classes and NP-completeness, we now want to
return to our tunnel planning problems. To show that tunnel planning is a hard
problem, we need to show that the problems 3.11 and 3.12 can be reduced to an
NP-complete problem. To this end, we will use the following NP-complete problem
which comes from [GJ90, p. 232].

Problem 3.13 (Rectilinear picture rectangle cover). Given a matrix M ∈ {0, 1}n×n

of a rectilinear binary picture and a positive integer k, is there a collection of k
or fewer rectangles that cover precisely the 1’s in M? Formally, does a collection
R1 = [rl

1, ru
1] × [cl

1, cu
1], . . . , Rk = [rl

k, ru
k] × [cl

k, cu
k] of rectangles in matrix M exist

(rl
i , ru

i , cl
i , cu

i ∈ [1, n] for all i ∈ [1, k]) such that

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 71

• for any i ∈ [1, k], Ri covers only 1’s of M, that is, |Ri| = ∑(ĩ, j̃)∈Ri
Mĩ, j̃.

• R1, . . . , Rk cover all 1’s in M, that is, |⋃k
i=1 Ri| = ∑(ĩ, j̃)∈[1,n]×[1,n] Mĩ, j̃.

Figure 3.8 shows an illustration of the rectilinear picture rectangle cover problem.
As noted already, Problem 3.13 is an NP-complete problem, although the history
behind the NP-completeness is a bit strange: Masek showed that the problem is
NP-complete [Mas78], but did not publish his result. Garey and Johnson also stated
the problem as NP-complete [GJ90] without giving a proof, but Johnson in his
“NP-completeness column” said that

[...] Of those “unpublished manuscripts” and “personal communications”
that have not yet seen the formal light of day, two in particular stand
out. They were both originally cited in [G&J], and between them they
seem to have garnered more enquiries than all the others combined,
sending me off to the copier repeatedly to fulfill requests. One was the
1978 manuscript “Some NP-complete set covering problems,” by William
Masek, who was then at MIT but has since disappeared from the theory
community.

That paper contains the NP-completeness proofs for two problems of
major importance in circuit and VLSI design. [...] The second, related
NP-completeness result was for the problem RECTILINEAR PICTURE
COMPRESSION ([SR251 in [G&J]): Given a rectilinear polygon R, possi-
bly containing holes, and an integer K, can R be expressed as the (non-
disjoint) union of K or fewer rectangles? [Joh87, p. 445]

Figure 3.8: An instance of the rectilinear picture rectangle cover problem (left) where ones in
the matrix are displayed by black pixels. The middle shows a possible coverage
of black pixels with two rectangles, although not covering all pixels. The instance
requires at least three rectangles to cover all black pixels, one of such coverings
is shown on the right-hand side. A similar version of this image was already
published in [BD19] © 2019 IEEE.

72 T U N N E L I N G T H E O R Y

An indirect proof of the NP-completeness of the Rectilinear picture rectangle cover
problem then appeared in [CR94]. The authors showed that 3-SAT can be reduced to
the Rectilinear picture rectangle cover problem when the rectilinear picture contains
no holes. In this context, a hole is an area of white pixels that are surrounded by black
pixels. 3-SAT is a special version of the satisfiability problem which is NP-complete,
see e.g. [Kar72] for more details. Solving the Rectilinear picture rectangle cover
problem without holes is clearly a special case of the more general version stated
in Problem 3.13. Therefore, Problem 3.13 must be NP-complete because it belongs
to NP (“guess rectangles and check the cover”) and is at least as hard as the same
problem without holes.

Our next goal is to describe a certain kind of Wheeler graphs which are strongly
related to rectilinear pictures. The following definitions and proofs were devised by
the author of this thesis in [BD19].

Definition 3.14 (Rectilinear picture Wheeler graph). Let M ∈ {0, 1}n×n be the matrix
representation of a rectilinear binary picture. Define M̃ ∈ {0, 1}2·n×2·n as a matrix
generated by dividing each pixel of M into four 2× 2 pixels, that is,

M̃[i][j] := M[i + 1 div 2][j + 1 div 2].

The rectilinear picture Wheeler graph RPG(M) = ([1, 2 · n] × [1, 2 · n], E) is an
edge-labeled graph whose edges are defined as follows:

E := { ((i, j), (i, j + 1)) | i ∈ [1, 2 · n], j ∈ [1, 2 · n− 1] }︸ ︷︷ ︸
link each row from left to right

∪ { ((i, 2 · n), (i + 1, 1)) | i ∈ [1, 2 · n− 1] } ∪ { ((2 · n, 2 · n), (1, 1)) }︸ ︷︷ ︸
link the end of each row with the start of the (cyclically) next row

The edge label function λ of RPG(M) is defined as follows:

λ((i, j), (i′, j′)) :=



λ((i− 1, j), (i− 1, j + 1)) , if i > 1, i′ = i, j′ = j + 1 and

M̃i,j = M̃i,j+1 =

M̃i−1,j = M̃i−1,j+1 = 1

j′ $ i′ , else

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 73

1 7 13 19 25 31

2 8 14 20 26 32

3 9 15 21 27 33

4 10 16 22 28 34

5 11 17 23 29 35

6 12 18 24 30 36

1$1 2$1 3$1 4$1 5$1 6$1

1$2 2$2 3$2 4$1 5$1 6$1

1$3 2$3 3$3 4$3 5$3 6$1

1$4 2$4 3$4 4$4 5$4 6$1

1$5 2$5 3$5 4$5 5$5 6$5

1$6 2$5 3$5 4$5 5$6 6$6

Figure 3.9: A rectilinear picture (left) and its corresponding rectilinear picture Wheeler graph
(right). A similar version of this image was already published in [BD19] © 2019
IEEE.

Definition 3.14 can be explained as follows: Divide each pixel of the picture into
four two-by-two minipixels. Then, place a node inside each of those minipixels. Link
each node with its right neighbor node, and link the end node of each row with
the start node of the (cyclically) next row. In general, an edge is labeled with the
swapped and $-separated coordinates of the underlying minipixel of the destination
node. In the special case that the minipixels of the source node and the node above
as well as the minipixels of the destination node and the node above are colored
black, label the edge with the label from the edge above. An example of a rectilinear
picture Wheeler graph is given in Figure 3.9.

The special way in which the edges of the graph are labeled ensures that the graph
is a Wheeler graph. In more detail, assume that each coordinate is a letter and that
an edge label is smaller than another edge label if it is lexicographically smaller. We
then obtain a Wheeler graph by ordering the nodes column-wise from left to right
and ascending from top to bottom, as depicted in Figure 3.9.

Lemma 3.15. Let RPG(M) = ([1, 2 · n]× [1, 2 · n], E) be the rectilinear picture Wheeler
graph of some matrix representation M ∈ {0, 1}n×n of a rectilinear binary picture. Then,
using the alphabet order i$j < i′$j′ :⇔ i < i′ or i = i′ and j < j′ and the Wheeler graph
node order (i, j) ≺ (i′, j′) :⇔ j < j′ or j = j′ and i < i′, RPG(M) is a Wheeler graph.

Proof. By the way edges are defined in Definition 3.14, it is clear that every node has
an in- and outdegree of at least one.

Let e = ((i, j), (ĩ, j̃)) and e′ = ((i′, j′), (ĩ′, j̃′)) be two edges of RPG(M). Suppose
λ(e) < λ(e′). As this means that λ(e) 6= λ(e′), the labels of e and e′ have been
produced by the second case of the label case distinction in Definition 3.14, so

74 T U N N E L I N G T H E O R Y

λ(e) = j̃$ĩ and λ(e′) = j̃′$ĩ′. As λ(e) < λ(e′), j̃ < j̃′ or j̃ = j̃′ and ĩ < ĩ′ is implied,
and thus, (ĩ, j̃) � (ĩ′, j̃′) must hold.

Now, suppose (i, j) ≺ (i′, j′) and λ(e) = λ(e′) holds. By the node ordering, this
implies i ≤ i′ and j ≤ j′. Also, the label equality for at least one edge must have been
produced by the first case of the label case distinction from Definition 3.14. Thus,
i = ĩ, i′ = ĩ′, j̃ = j + 1 and j̃′ = j′ + 1 must hold. By substituting those identities in
the inequalities i ≤ i′ and j ≤ j′, we obtain ĩ ≤ ĩ′ and j̃− 1 ≤ j̃′ − 1, or equivalently,
j̃ ≤ j̃′. This clearly implies (ĩ, j̃) � (ĩ′, j̃′).

The special way in which the edges of a rectilinear picture Wheeler graph are
defined ensures that all prefix intervals in the graph correspond to the black pixels
of the underlying picture. A parallel path is labeled equally if and only if the four
surrounding minipixels are black. Figure 3.10 shows this analogy.

Theorem 3.16. The Wheeler graph prefix interval cover problem is NP-complete.

Proof. We have already seen that the Wheeler graph prefix interval cover belongs
to the complexity class NP. The NP-hardness is shown by a reduction from the
rectilinear picture rectangle cover problem to our problem.

The reduction is given by converting some rectilinear binary picture M ∈ {0, 1}n×n

to a rectilinear picture Wheeler graph RPG(M). By Lemma 3.15 it is ensured that
RPG(M) is a Wheeler graph. Moreover, without explicitly formulating an algorithm,
it can be seen that the conversion from a picture M to the Wheeler graph RPG(M)

can be done in polynomial time.
What remains to be shown is the satisfiability equivalence of the problems. There-

fore, let M be some rectilinear picture and let k be any positive integer.

“⇒”: By the construction of RPG(M) it is ensured that two parallel paths are equally-
labeled if and only if the underlying pixels of M are colored black. There-
fore, rectangles in M that cover black pixels correspond to prefix intervals in
RPG(M). Thus, if the black pixels in M can be covered by at most k rectan-
gles, then all nodes of prefix intervals in RPG(M) can be covered by the k
corresponding prefix intervals.

“⇐”: Suppose all nodes of prefix intervals in RPG(M) can be covered by at most k
prefix intervals. The prefix intervals might not properly coincide with rectan-
gles in M because a prefix interval could e.g. start in the middle of a pixel in
M instead of starting at its boundaries. However, in such cases one can extend

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 75

the prefix intervals such that start and end nodes correspond to the boundaries
of rectangles in M. Therefore, if all nodes of prefix intervals in RPG(M) can be
covered by at most k prefix intervals, then the nodes can also be covered by at
most k prefix intervals which coincide with rectangles in M and cover all black
pixels.

Corollary 3.17. The Wheeler graph prefix interval coverage problem is NP-complete.

Proof. Similar to the Wheeler graph prefix interval cover problem one can see that
the coverage problem is in NP by guessing k random prefix intervals and checking
if the prefix intervals contain at least m nodes.

Let m̃ be the number of nodes of all prefix intervals contained in some Wheeler
graph G. This number can be computed in polynomial time, see e.g. Section 3.1.
We reduce the cover problem to the coverage problem by asking if at most k prefix
intervals suffice to cover m̃ nodes in G. The reduction can be done in polynomial
time and clearly ensures equal satisfiability.

3.4.3 Additional notes on tunnel planning complexity

Because exact tunnel planning seems to be difficult, the next logical step is to look
for approximate tunnel planning solutions. More precisely, in the case that all prefix

1 7 13 19 25 31

2 8 14 20 26 32

3 9 15 21 27 33

4 10 16 22 28 34

5 11 17 23 29 35

6 12 18 24 30 36

1$1 2$1 3$1 4$1 5$1 6$1

1$2 2$2 3$2 4$1 5$1 6$1

1$3 2$3 3$3 4$3 5$3 6$1

1$4 2$4 3$4 4$4 5$4 6$1

1$5 2$5 3$5 4$5 5$5 6$5

1$6 2$5 3$5 4$5 5$6 6$6

1 7

13 17 21 26

2 8

3 9 14 18 22 27

4 10 15 19 23 28

5 11

16 20

24 29

6 12 25 30

1$1 2$1

1$2 2$2

1$3 2$3 3$3 4$3 5$3

1$4 2$4 3$4 4$4 5$4

1$5 6$5

1$6 6$6

4$1 5$1 6$1

6$1

6$1

2$5

2$5
4$5

3$1

3$2

3$5

3$5

5$5

5$6

Figure 3.10: Analogy between the rectilinear picture rectangle cover problem and the
Wheeler graph prefix interval cover problem on rectilinear picture Wheeler
graphs. The left-hand side shows that any rectangle covering black pixels corre-
sponds to a prefix interval in the graph. The right-hand side shows the tunneling
of the marked prefix intervals in the Wheeler graph. A similar version of this
image was already published in [BD19] © 2019 IEEE.

76 T U N N E L I N G T H E O R Y

intervals can be covered with the optimum of k∗ prefix intervals, one could try to
find a strategy ensuring that at most c · k∗ prefix intervals are necessary to cover all
prefix intervals, where c is a small constant greater than 1. A greedy strategy for
the rectilinear picture rectangle cover (picking the biggest rectangles in a greedy
manner) results in c = log(n), so the approximation factor is input-sensitive and
gets worse the bigger the instance is [HLL07].

Another way to get approximate results would be the use of a polynomial time
approximation scheme (PTAS). Such a scheme requires an additional approximation
error ε > 0 and produces a c = (1 + ε) solution that requires O(nexp (1/ε)) run-
time. Unfortunately, the rectilinear picture rectangle cover problem is MaxSNP-hard
[BD97] and hence no PTAS for the problem exists unless P 6= NP holds [Pap94]. We
will provide a short proof showing that the Wheeler graph prefix interval cover
problem is MaxSNP-hard, too. The result was first mentioned by the author of this
thesis in [BD19].

We will not reveal the full theory behind the complexity class MaxSNP; see e.g.
[Pap94] for a full description. Instead, we present a special approximation-preserving
kind of reduction which is similar but a bit more complex than the reductions we
have seen so far. Given some problems A and B with cost functions cA and cB as
well as the optimal instance solutions OPTA(x) and OPTB(x), the problem A can be
L-reduced onto problem B if two polynomial-time computable functions f and g
exist such that

1. there exists a positive constant α such that for any problem instance x from
problem A, OPTB(f (x)) ≤ α ·OPTA(x) holds.

2. there exists a positive constant β such that for any problem instance x from
problem A with solution y of the problem instance f (x),
|OPTA(x)− cA(g(y))| ≤ β · |OPTB(f (x))− cB(y)| holds.

We will now explain the components of an L-reduction by reducing the optimization
version of the rectilinear picture rectangle cover problem to the optimization version
of the Wheeler graph prefix interval cover problem4 and thereby show that the
Wheeler graph prefix interval cover problem is MaxSNP-hard. First of all, our cost
functions are given by the number of rectangles/prefix intervals required to cover ev-
erything. The optimal values are given by the minimal number of rectangles/prefix

4 Optimization versions here mean that we do not want to know if k rectangles suffice to cover all black
pixels. Instead, we want to use as few rectangles as possible to cover all black pixels, so a solution
here is any choice of rectangles which cover all black pixels.

3.4 H A R D N E S S O F T U N N E L P L A N N I N G 77

intervals needed to cover everything. The problem-translating function f is given
by rectilinear picture Wheeler graphs from Definition 3.14, so f (x) = RPG(x). The
solution-transforming function g now converts any solution from RPG(x) to a so-
lution of x. In our case, given k prefix intervals that cover all prefix intervals of
RPG(x), we can retranslate such a solution by determining rectangles of the minip-
ixels underlying the nodes of a prefix interval. Then, by stretching those rectangles
to the boundaries of the original pixels (similar as described in the proof of Theorem
3.16), we obtain a solution covering all black pixels in the original problem instance
x. Both functions can clearly be computed in polynomial time.

For any rectilinear picture x, as proven in Theorem 3.16, any solution of rectangles
covering black pixels corresponds to an equivalent solution of prefix intervals in
RPG(x) and vice versa. Therefore, the optimum solutions in x and RPG(x) are
equivalent, so condition 1 of the L-reduction is satisfied using α = 1. Moreover, as
the solution-transforming function g transforms k prefix intervals to k rectangles,
we have cA(g(y)) = cB(y) for any solution y of the problem instance RPG(x). Thus,
condition 2 of L-reductions is satisfied using β = 1.

Corollary 3.18. No PTAS for the Wheeler graph prefix interval cover problem exists unless
P=NP.

It could be possible that the Wheeler graph prefix interval cover problem has a
constant factor approximation. We are not sure about such a result, but herein give
the following quote:

[...] In computational geometry, this problem received considerable atten-
tion in the past 25 years, in particular with respect to its complexity and
approximability in a number of variants. Still, the intriguing main open
question [5] is:

Is there a constant factor approximation algorithm for the rect-
angle cover problem?

We do not answer this question now, but we offer a different and new
kind of reply, which is “computationally, yes”. [...] [HLL07].

Because of the strong relation between prefix interval cover and rectangle cover, we
suppose that it is not easy to design such an algorithm, but clearly state this as an
open problem. We want to complete this section with some more remarks on the
hardness of tunnel planning.

78 T U N N E L I N G T H E O R Y

Alanko et al. [Ala+19] extended prefix intervals from parallel equally labeled paths
to parallel equally labeled isomorphic subgraphs. In the case of tunnel planning,
this special problem seems to have some similarity with the NP-complete subgraph
isomorphism problem [GJ90, p. 202]. However, as the results from Theorem 3.16 and
Corollary 3.17 hold for non-branching Wheeler graphs, they do so for more complex
graphs like e.g. de Bruijn graphs or tries (Section 2.4). Thus, tunnel planning for
more complex structured graphs will remain hard.

The attentive reader might have noticed that the Wheeler graph prefix interval
cover problem does not precisely reflect the situation of tunnel planning. In Theorem
3.9 we have seen that overlapping prefix intervals can be tunneled only if they build
a kind of “cross-overlay”. According to the definition of the Wheeler graph prefix
interval cover problem, the prefix intervals are allowed to overlap in any way. Thus,
one would have to show that the rectilinear picture rectangle cover problem is NP-
complete if the rectangles are allowed to overlap in the same “cross-overlay” shape.
We strongly suppose that this special version of the problem is also NP-complete.
The restriction seems to make the rectangle choice even harder, but we were not
able to find this case in current literature and therefore state this as an open problem.
Instead, in Chapter 4, we present a special restriction of prefix intervals, consisting of
only overlayable prefix intervals. This restriction is very useful for data compression
because the tunnel start and end markers can be represented succinctly.

In the case of non-overlapping prefix intervals it seems possible to find an efficient
solution of the Wheeler graph prefix interval cover problem, as a polynomial time
algorithm for the non-overlapping rectilinear picture rectangle cover problem exists
[Oht82]. The problem with such an approach is that it is not straightforward to
derive a picture from the prefix intervals in a Wheeler graph. For example, it is not
clear how to assign the first nodes to some pixels. Also, the case of self-overlapping
prefix intervals requires special handling, because this case would produce a kind of
image tube instead of an image matrix. Finally, the dimension of the image is not
directly clear: given a graph with n nodes, in the simplest case, one could use an
n× n binary matrix, but this would lead to an Ω(n2) approach. In Chapter 5 we will
instead present a special restriction of non-overlapping prefix intervals which can
easily be computed and preserves some useful combinatorial properties of a BWT.

4
A P P L I C A T I O N I N D A T A C O M P R E S S I O N

The Burrows-Wheeler transform was invented for the purpose of data compression.
25 years after its first presentation in [BW94], Giovanni Manzini gave an inspiring
talk about the BWT titled “The Past and the Future of an Unusual Compressor”
during the Data Compression Conference 2019 [Man19]. Despite good compression
properties, currently the only widely known BWT compressor is bzip2 [Sew96].

The main problem of BWT based compressors is performance. The retransfor-
mation of a BWT requires “pseudo-random jumps” inside the string L using the
LF-mapping, see Section 2.1.1. In contrast, most modern computer architectures
use a memory cache hierarchy, making memory accesses faster the less distance
there is between the previous and current RAM access [Dre07]. As a consequence,
“pseudo-random jumping” inside the BWT has bad caching properties and makes
BWT retransformation slow. There has been some research on improving the re-
transformation speed of a BWT [KKP12], but the speed is still slower than that of
LZ77-based compressors.

The second performance problem of the BWT is its construction. Although a
plethora of suffix array construction algorithms exist (see e.g. [PST07]), no algorithm
has crystallized out itself as “the suffix array construction algorithm”. It seems to be
one of the hardest problems in computer science to devise a suffix array construction
algorithm which

• uses almost no space (in the best case, it uses O(1) space in RAM and writes
the suffix array directly to disk).

• has a good worst-case run-time in theory.

• runs fast on current computer architectures.

There are some good candidates, see e.g. [Mor03; FK17; NZC09; Egi+19]. However,
to be used in big data applications, more improvements would be desirable.

In this chapter, we will address a third issue which is related to BWT compres-
sors: the compression rate itself. After the first good compression results of bzip2,
researchers tried to improve the compression rate of BWT-based compressors with

79

80 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

BWT Tunneling Post stages
string S L L̃, Dout, Din source

coding

Figure 4.1: Integration of tunneling into the block-sorting compression chain, see also Figure
2.6. Tunneling works as an interim stage. Post stages are, for example, move-to-
front transformation and source encoding, see Section 2.2.4.

varying degrees of success [Abe10; HMB06]. Nowadays, the compression rate of the
oldest BWT compressor described by the inventors of the BWT themselves is still
competitive to other BWT compressors developed over the past 26 years. Thus it is
unlikely that the compression rate of BWT compressors can be improved much by
encoding the BWT with a new mechanism.

Tunneling is a different mechanism, because it shortens a BWT but leaves its
structure in the sense of backward steps intact. Also, tunneling does not recommend
a special encoding procedure for the remaining BWT or the additional bit-vectors
Dout and Din. Therefore, tunneling is a perfect interim stage for BWT compressors, see
also Figure 4.1. In this chapter, we will present the necessary “engineering work” to
include tunneling into the BWT compressor process chain. As we will see, this results
in improved BWT compressors which are especially successful in compressing large
and repetitive data. The chapter is based on the first publication about tunneling
[Bai18] presented by the author of this thesis and further improvements made during
supervised student projects [Ded18; Rät19].

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S

The compressibility of a BWT mainly depends on the number of runs it contains.
As a reminder, a run in a BWT is a length-maximal repetition of the same character,
see Definition 2.9. In general, the smaller the number of runs in a BWT, the more
compressible it is. There are numerous ways to encode a single run, see e.g. [Abe10].
One of the simplest and most popular ways to encode a run is given by the run-
length encoding method shown in Section 2.2.2.

A successful integration of tunneling into the block-sorting compression chain re-
quires one to find good “candidates” to be tunneled. More precisely, we have to find
large prefix intervals which reduce the BWT length by a large amount. Furthermore,
we should regard the compressibility of the additional BWT components Din and

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 81

Dout, as the additional encoding costs of these components may overcome the gain
achieved by reducing the length of the BWT.

Unfortunately, finding “good candidates” turns out to be a difficult task when
regarding all possible prefix intervals, see Section 3.4 about tunnel planning hardness.
Moreover, we have to ensure that the candidates fulfill the special property of being
overlayable. As a reminder, this property describes a special shape of overlapping
prefix intervals and is required to invert a tunneled BWT, see Section 3.3.

In this chapter, we present a special restricted class of prefix intervals whose start
column and end column coincide with runs in the underlying BWT. As we will
see, this restriction allows us to compute the candidates efficiently and ensures the
overlayability of the candidates. Furthermore, the length of the components Din

and Dout can be reduced to the number of runs in the BWT. As the number of runs
is typically considerably less than the length of the BWT, this allows for a small
encoding size of the additional components.

4.1.1 Definition and properties

We now want to give the definition of run-terminated prefix intervals. The idea of
run-terminated prefix intervals was presented by the author of this thesis in [Bai18].

Definition 4.1 (Run-terminated prefix intervals). Let S be a null-terminated string of
length n and let L be its BWT with LF-mapping LF. LetR be the set of runs defined
asR := { [i, j] ⊆ [1, n] | [i, j] is a run of L }.

Let 〈w, [i, j]〉 be a prefix interval in L. We call 〈w, [i, j]〉 a run-terminated prefix
interval if and only if

• the start column coincides with a run, i.e. [i, j] ∈ R.

• the end column coincides with a run, i.e. [LFw−1[i], LFw−1[j]] ∈ R.

Additionally, for each run [i, j] ∈ R, we define the tuple 〈1, [i, j]〉 as a run-terminated
prefix interval. A run-terminated prefix interval 〈w, [i, j]〉 is called length-maximal
if it cannot be extended to the left or right. Formally, this means that no x > 0
exists such that 〈w + x, [i, j]〉 or 〈w + x, [LF−x[i], LF−x[j]]〉 is a run-terminated prefix
interval.

As stated already, run-terminated prefix intervals have the property that their start-
and end-columns coincide with runs of the underlying BWT. An example of run-
terminated prefix intervals can be found in Figure 4.2. The definition also includes

82 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

i SA[i] run S[1..SA[i]− 1] S[SA[i]..n]
1 9 [1, 3]
2 6
3 3
4 8 [4, 4]
5 5 [5, 6]
6 2
7 7 [7, 8]
8 4
9 1 [9, 9]

TCATCAGC $
TCATC AGC$

TC ATCAGC$
TCATCAG C$

TCAT CAGC$
T CATCAGC$

TCATCA GC$
TCA TCAGC$

ε TCATCAGC$

Figure 4.2: Length-maximal run-terminated prefix intervals in the BWT of S =
TCATCAGC$. The BWT contains the length-maximal run-terminated prefix inter-
vals P = 〈3, [7, 8]〉 and P′ = 〈1, [1, 3]〉. As a counter example, the prefix interval
〈4, [7, 8]〉 is not run-terminated, as its end-column [LF3[7], LF3[8]] = [8, 9] does
not coincide with a run in the BWT.

each run as a special singleton run-terminated prefix interval. For tunneling, only
the largest prefix intervals are subjects of interest. Therefore, Definition 4.1 includes
conditions for the length-maximality of run-terminated prefix intervals.

Our first goal is to ensure that the conditions of tunneling from Definition 3.5 are
fulfilled. To fulfill these conditions, the rows of a run-terminated prefix interval have
to be node disjoint.

Lemma 4.2. Let S be a null-terminated string of length n and let L be its BWT with LF-
mapping LF and run setR. Then, any run-terminated prefix interval 〈w, [i, j]〉 contained in
L has disjoint rows. Define rowL(y, x) := {y, LF1[y], . . . , LFx−1[y]}, then

rowL(y, w) ∩ rowL(y′, w) = ∅ for all i ≤ y < y′ ≤ j.

Proof. Assume two rows y < y′ intersect, i.e. rowL(y, w) ∩ rowL(y′, w). Because both
rows are paths in the underlying Wheeler graph, the intersection must contain either
y or y′. W.l.o.g. assume that y′ ∈ rowL(y, w) ∩ rowL(y′, w) such that LFx[y] = y′.
Because the rows belong to a run-terminated prefix interval, L[LFx[y] − y + i] =
. . . = L[LFx[y]− y + j] must hold. Plugging the value y′ = LFx[y] in the equations
shows that L[y′ − y + i] = . . . = L[y′ − y + j] must hold. Define h := y′ − y, then
i ≤ y < y′ ≤ j implies h ∈ [1, j− i]. Because [i, j] is the start of the prefix interval, we
can extend the above equality to L[i] = . . . = L[i + h] = . . . = L[j] = . . . = L[j + h].
This means that [i, j] is not a run because it can be extended to the bottom, so 〈w, [i, j]〉
is not a run-terminated prefix interval.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 83

Lemma 4.2 shows that it is possible to tunnel run-terminated prefix intervals. The
next goal is to show that any selection of length-maximal run-terminated prefix
intervals can be tunneled without causing problems.

Lemma 4.3. Let S be a null-terminated string of length n and let L be its BWT with LF-
mapping LF. Let 〈w, [i, j]〉 and 〈w′, [i′, j′]〉 be two distinct length-maximal run-terminated
prefix intervals. Then, 〈w, [i, j]〉 and 〈w′, [i′, j′]〉 are overlayable.

Proof. Before we proof the theorem, we repeat the criteria for overlayability from
Theorem 3.9. We also express the criteria in the form of BWT prefix interval notation
instead of Wheeler graph prefix interval notation. For ease of expression, we use the
definition rowL(y, x) := {y, LF1[y], . . . , LFx−1[y]} from Lemma 4.2.

W.l.o.g. assume that w ≥ w′. Then, P = 〈w, [i, j]〉 and P′ = 〈w′, [i′, j′]〉 are over-
layable if and only if

1. The uppermost row of P′ does not share an entry with any other row except
for the uppermost row of P:

rowL(i′, w′) ∩

 j⋃
k=i+1

rowL(k, w)

 = ∅.

2. One more row excluding the uppermost row of P′ shares no entry with all
rows except for the uppermost row of P. Formally, there exists a k′ ∈ [i′ + 1, j′]
such that

rowL(k′, w′) ∩

 j⋃
k=i+1

rowL(k, w)

 = ∅.

3. No row of P′ shares entries with the start- or end-column of P: j′⋃
k′=i′

rowL(k′, w′)

 ∩ ([i, j] ∪ [LFw−1[i], LFw−1[j]]
)
= ∅.

Assume criteria 1 is false. Then there exists a k ∈ [i + 1, j] such that rowL(i′, w′) ∩
rowL(k, w) 6= ∅. Because both rows are paths in the Wheeler graph of L, the inter-
section must contain at least one of the entries i′ or LFw′−1[i′]. Because k refers to
any row except of the uppermost row of P and P is a run-terminated prefix interval,

84 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

L[LFx[k − 1]] = L[LFx[k]] holds for all x ∈ [0, w − 1]. Applying this result to one
of the entries i′ or LFw′−1[i′] contained in the row intersection shows that either
L[i′ − 1] = L[i′] or L[LFw′−1[i′ − 1]] = L[LFw′−1[i′]] must hold. As i′ is the uppermost
row of P′, this implies that either [i′, j′] 6∈ R or [LFw′−1[i′], LFw′−1[j′]] 6∈ R because
the corresponding run can be extended to the top. Thus, P′ is not a run-terminated
prefix interval, which is a contradiction.

Now assume criteria 2 is wrong. Then, rowL(i′ + y, w′) ∩ rowL(i + y, w) 6= ∅ holds
for all y ∈ [1, j′− i′]. As P and P′ are prefix intervals with parallel paths, rowL(i′, w′)∩
rowL(i, w) 6= ∅ must hold too. We now distinguish two cases: in the first case,
assume that P is higher than P′, i.e. j− i > j′ − i′. In the similar argument as above,
we can see that at least one of the entries j′ or LFw′−1[j′] is contained in the row
intersection rowL(j′, w′) ∩ rowL(i + j′ − i′, w). Analogously as above, this shows that
either [i′, j′] 6∈ R or [LFw′−1[i′], LFw′−1[j′]] 6∈ R because the corresponding run can
be extended to the bottom. Thus, P′ is not a run-terminated prefix interval, which is
a contradiction. In the second case, assume that both prefix intervals have the same
height, i.e. j− i = j′ − i′. In this case, as w ≥ w′ holds, P is a left- or right-extension
of P′. This implies a contradiction because P′ would then not be length-maximal.

Finally, assume criteria 3 is wrong. W.l.o.g. assume that the start-column of P
shares entries with the rows of P′. Let x ∈ [0, w− 1] such that [i, j]∩ [LFx[i′], LFx[j′]] 6=
∅. As P is run-terminated, [i, j] ∈ Rmust hold. This implies [LFx[i′], LFx[j′]] ⊆ [i, j],
because otherwise, P′ would not be a prefix interval as it would contain different
characters in its x-th column. First, assume that [LFx[i′], LFx[j′]] = [i, j]. As w ≥ w′

holds, this means that we can extend P′ to the run-terminated prefix interval P, so
P′ is not length-maximal. Second, assume [LFx[i′], LFx[j′]] ⊂ [i, j]. Because w ≥ w′

holds, the last column of P′ must be contained within the w′ − x-th column of P, i.e.
[LFw′−1[i′], LFw′−1[j′]] ⊂ [LFw′−x−1[i], LFw′−x−1[j]]. This implies that the end column
of P′ does not coincide with a run, so P′ is not a run-terminated prefix interval. The
case of shared entries in the end-column of P follows analogously and also implies a
contradiction.

After ensuring that tunneling of run-terminated prefix intervals causes no prob-
lems or side-effects between prefix intervals, the last lemma of this section presents
results about the dimensions of such intervals.

Lemma 4.4. Let S be a null-terminated string of length n and let L be its BWT with LF-
mapping LF. Let R be the set of runs in L, and let RP be the set of all length-maximal
run-terminated prefix intervals in L.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 85

• The sum of heights ofRP is bound by n: ∑〈w,[i,j]〉∈RP (j− i + 1) ≤ n.

• The sum of widths ofRP is bound by n: ∑〈w,[i,j]〉∈RP w ≤ n.

Proof. We denote by LMRTPI a length-maximal run-terminated prefix interval. As
LMRTPIs are length-maximal, at most one LMRTPI can start at a run. We thus
obtain ∑〈w,[i,j]〉∈RP (j− i + 1) ≤ ∑〈w,[i,j]〉∈R(j− i + 1) = n. For the sum of widths,
we show that at most h− 1 LMRTPIs can point through a run of height h. More
precisely, for a run [i, j] ∈ R, at most j− i LMRTPIs 〈w′, [i′, j′]〉 can exist such that
(
⋃j′

k′=i′ rowL(k′, w′)) ∩ [i, j] 6= ∅. We will proof the result later, but beforehand show
how it can be used to finish the proof.

Summing the weights of LMRTPIs is equal to counting the number of columns
contained in all LMRTPIs. Each column of an LMRTPI is a subsequence of a run
in the BWT. Therefore, counting how many LMRTPIs point through a run is equal
to counting how many columns of LMRTPIs are subsequences of the run. Thus,
counting the number of LMRTPIs that point through all runs of the BWT is equal to
the sum of widths of all LMRTPIs. Using the upper bound of j− i LMRTPIS pointing
through a run [i, j] ∈ R, we obtain

∑
〈w,[i,j]〉∈RP

w ≤ ∑
〈w,[i,j]〉∈RP

(j− i) ≤ n.

Now, we will proof that at most j− i LMRTPIs can point through a run [i, j] ∈ R.
The proof is done using an induction over the height j − i + 1 of a run. Clearly,
no LMRTPI points through a run with the height of 1, as prefix intervals require a
minimal height of 2.

First, consider a run [i, j] with the height j− i + 1 = 2. In this case, the run may or
may not belong to an LMRTPI. However, less than two LMRTPIs can point through
the run, because otherwise, the LMRTPIs would not be length-maximal. Therefore,
the number of LMRTPIs that point through the run is limited by j− i = 1.

Now, consider a run [i, j] ∈ Rwith height j− i + 1 > 2. Let P be the set of (normal)
prefix intervals that start in a run and end in [i, j], i.e. 〈w′, [i′, j′]〉 ∈ P⇔ [i′, j′] ∈ R
and [LFw′−1[i′], LFw′−1[y′]] ⊆ [i, j]. Furthermore, let 〈w1, [i1, j1]〉, . . . , 〈wm, [im, jm]〉 ∈ P
be the prefix intervals which are nearest to [i, j], i.e. any prefix interval 〈w′, [i′, j′]〉 ∈ P
which overlaps with a prefix interval 〈wk, [ik, jk]〉 satisfies w′ ≥ wk.

86 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

All LMRTPIs not starting at [i, j] but pointing through [i, j] then also point through
the runs [i1, j1], . . . , [im, jm]. Because 〈w1, [i1, j1]〉, . . . , 〈wm, [im, jm]〉 cannot overlap
due to their definition, the following must hold:

m

∑
k=1

(jk − ik + 1) ≤ (j− i + 1). (4.1)

Assume that jk − ik + 1 < j− i + 1 holds for all k ∈ [1, m]. Then, by induction,
we can see that at most jk − ik LMRTPIs point through [ik, jk]. This means that at
most 1 + ∑m

k=1(jk − ik) LMRTPIs point through [i, j] (plus one because [i, j] could be
the start of an LMRTPI itself). In the case m = 1, this number can be bound using
1 + (j1 − i1) ≤ j− i. In the case m > 1, we can use the inequality (4.1) and obtain
1 + ∑m

k=1(jk − ik) = 1−m + ∑m
k=1(jk − ik + 1) ≤ 1−m + j− i + 1 ≤ j− i.

Finally, assume that jk − ik + 1 = j− i + 1 holds for all k ∈ [1, m]. Then clearly,
m = 1 holds because otherwise inequality (4.1) is wrong. This means that [i, j] has
only one predecessing run with the same height. Thus, [i, j] cannot be the start of
an LMRTPI, because otherwise, it could be extended to the right. The number of
LMRTPIs pointing through [i, j] then is identical to the number of LMRTPIs pointing
through [i1, j1]. Repeatedly applying this argument until a run [i′, j′] with multiple
or smaller predecessing runs is reached then shows that the number of LMRTPIs
pointing through [i, j] is less than or equal to j− i.

The Lemmas 4.2, 4.3 and 4.4 describe important properties of length-maximal
run-terminated prefix intervals. We summarize the results in Corollary 4.5.

Corollary 4.5. Let S be a null-terminated string of length n, let L be its BWT and letRP
be the set of all length-maximal run-terminated prefix intervals in L.

• Each length-maximal run-terminated prefix interval consists of disjoint rows and
therefore can be tunneled.

• Each subset RP ⊆ RP contains pairwise overlayable prefix intervals. As a result,
each subset RP ∈ RP of prefix intervals can be tunneled.

• The sum of the heights of all prefix intervals inRP is less than or equal to n.

• The sum of the widths of all prefix intervals inRP is less than or equal to n.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 87

4.1.2 Computation

After showing some basic properties of length-maximal run-terminated prefix in-
tervals, the next goal is to present an efficient algorithm for their computation. As
it turns out, the property of run-termination allows one to do this computation
relatively easily and also memory efficient. The results of this section come from the
full version of the first paper which presented tunneling [Bai18], published by the
author of this thesis.

Before an algorithm is described, we want to present a “toolbox” which eases the
handling of runs and LF-mapping navigation in a BWT.

Definition 4.6 (Run-LF support). Let S be a null-terminated string of length n, let L

be its BWT with LF-mapping LF, and letR be the set of runs in L.
The Run-LF support of L consists of an array LFR of size |R| and a bit-vector BR

of length n + 1 which are defined as follows:

• BR[i..j + 1] = 10j−i1⇔ [i, j] ∈ R.

• LFR[k] := LF[selectBR(1, k)].

Examples of a Run-LF support from Definition 4.6 can be found in Figure 4.3. The
bit-vector BR can be used to get information about runs. For example, let y ∈ [1, n]
be a position and suppose we want to know the run [i, j] ∈ Rwhich satisfies y ∈ [i, j].
We start by setting k← rankBR(1, y) to get the run identifier in which y lies. Then, the
run boundaries can be found using i← selectBR(1, k) and j← selectBR(1, k + 1)− 1.

To support the LF-mapping, it suffices to store only the first LF-mapping of each
run. In the case of a run [i, j], L[i] = · · · = L[j] holds, so the LF-mapping runs “in

i k LF[i] LFR[k] BR[i] L[i] S[SA[i]..n]
1 4 1 C $
2 5 0 C AGC$
3 6 0 C ATCAGC$
4 7 1 G C$
5 8 1 T CAGC$
6 9 0 T CATCAGC$
7 2 1 A GC$
8 3 0 A TCAGC$
9 1 1 $ TCATCAGC$

10 1

1 4

2 7
3 8

4 2

5 1

Figure 4.3: Run-LF support for the BWT L of the string S = TCATCAGC$.

88 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

parallel”. More precisely, LF[i + h] = LF[i] + h holds for all h ∈ [0, j− i]. This means
that we can compute the LF-mapping at a position y by first computing the run
identifier k ← rankBR(1, y). Now, we can compute the offset h to the uppermost
entry of the run using h ← y− selectBR(1, k). The parallelism of the LF-mapping
then ensures that LF[y] = LFR[k] + h.

The computation of a Run-LF support and the initialization of rank- and select-
support on BR can be done in O(n) time and is straightforward. This support
suffices to compute all length-maximal run-terminated prefix intervals in a BWT.
For the computation we will use two additional arrays PE and RPE. The array PE

is an abbreviation for prefix interval end: for each run [i, j], let 〈w, [i, j]〉 be the left-
maximal prefix interval starting at the run, meaning that 〈w + 1, [i, j]〉 is no prefix
interval. The array PE then stores the entry LFw[i]. More precisely,

〈w, [i, j]〉 is a left-maximal prefix interval and [i, j] ∈ R ⇔ PE[rankBR(1, i)] = LFw[i].

Before we explain the array RPE, we will first explain an incremental algorithm
to compute PE. The algorithm is implicitly contained in Algorithm 4.1. We start by
setting PE← LFR, because each run implies a prefix interval of length one.

Then, for each run [i, j] with k = rankBR(1, i), we search for the longest left-
extension of a prefix interval. We do this by checking if [PE[k], PE[k] + (j− i)] =
[LFw[i], LFw[j]] is a subrange of a run [i′, j′] ∈ R, i.e. [PE[k], PE[k] + (j− i)] ⊆ [i′, j′].
In this case, a left extension is possible. Clearly, the prefix interval starting at [i, j]
can be extended by the same amount of columns that a left-maximal prefix interval
starting in [i′, j′] has. Therefore, we recursively search for the longest left-extension
of a prefix interval starting at [i′, j′].

Assume this longest extension has been found. We can then update the value PE[k]
as follows: let k′ = rankBR(1, i′) be the run identifier of [i′, j′]. Note that until now,
PE[k] ∈ [i′, j′] holds. In the case that PE[k] = i holds, the topmost row of both prefix
intervals coincide, so we can set PE[k] ← PE[k′]. If this is not the case, as the rows
in a prefix interval run in parallel, we need to add the offset between the topmost
row of [i, j] and the topmost row of [i′, j′] to the value of PE[k′]. This ensures a valid
modification of PE[k]. Therefore, we can use the formula PE[k]← PE[k′] + (PE[k]− i)
to left-extend the prefix interval of [i, j]. Afterwards, we search for the next left-
extension of [i, j].

Algorithm 4.1 uses this as follows: it starts by iterating over all runs [i, j] with
height j− i + 1 ≥ 2 (lines 4–7). Then, the run k is pushed to a stack to allow recursive

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 89

Data: Run-LF support of the underlying BWT L with runsR.
Result: Array RPE indicating the upper left corner of all length-maximal run-terminated prefix intervals.

1 initialize an empty stack s
2 let PE be a copy of LFR
3 let RPE be a copy of LFR
4 for r ← 1 to |R| do
5 k← r
6 i← selectBR (1, k)
7 j← selectBR (1, k + 1)− 1
8 push element k on the stack s
9 repeat

10 k′ ← rankBR (1, PE[k])
11 if k′ = rankBR (1, PE[k] + j− i) then // k can be left-extended
12 k← k′
13 i← selectBR (1, k)
14 j← selectBR (1, k + 1)− 1
15 push element k on the stack s

16 else // k can not be left-extended
17 k′ = k
18 i′ = i
19 j′ = j
20 pop topmost element of stack s // pop element k
21 if stack s is not empty then
22 k← top of stack s
23 i← selectBR (1, k)
24 j← selectBR (1, k + 1)− 1

25 PE[k]← PE[k′] + (PE[k]− i)
26 if j− i = j′ − i′ then // run-terminated prefix interval starting at k can be extended
27 RPE[k]← RPE[k′]
28 RPE[k′]← ⊥ // k′ is not length-maximal

29 until stack s is empty

30 return RPE

Algorithm 4.1: Computation of length-maximal run-terminated prefix intervals. A mod-
ified version of this algorithm has already been published in the full version of [Bai18],
licensed under CC BY 3.0, http://creativecommons.org/licenses/by/3.0/.

left-extensions (line 8). In the case that the prefix interval starting at k can be left-
extended, the algorithm recursively proceeds with the run k′ (lines 11–15). In the case
that the prefix interval starting at k cannot be extended, k is popped from the stack
(lines 17–20). If the stack is not empty, the previous run k is popped from the stack
and the prefix interval end pointers PE are adapted (lines 25). The next iteration then
checks if further left-extensions of the prefix interval starting at k are possible.

Note that it is possible that a run k is processed multiple times. This however
causes no problems because a maximal left extension is found in the first processing.
The later processings of the same run will then try to find additional left-extensions
which have no effect on the value of PE[k].

We now come to the array RPE. Similar to the array PE, for each run [i, j] it stores
the value LFw[i] in the case that a run-terminated length-maximal prefix interval

http://creativecommons.org/licenses/by/3.0/

90 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

〈w, [i, j]〉 exists. Note the subtle difference to PE: PE considers only left-maximality
while RPE considers length-maximality. In the case that no such prefix interval exists,
the array stores the value ⊥ instead.

Definition 4.7 (RPE array). Let S be a null-terminated string of length n with BWT
L and Run-LF support. Let [i, j] ∈ R be a run with run identifier k = rankBR(1, i).
Then,

RPE[k] :=


LFw[i] , if a length-maximal run-terminated prefix interval

〈w, [i, j]〉 exists.

⊥ , else.

The array RPE can be computed as a by-product of the computation of PE. One
starts by setting RPE[k] to LFR[k] in Algorithm 4.1. This means that the value RPE[k]
induces a run-terminated prefix interval of length one at each run, which is not
necessarily length-maximal.

Now suppose a run [i, j] with run identifier k = rankBR(1, i) is placed onto the
stack s for the first time. The stack s maintains following invariant: viewing the stack
from top to bottom, the runs have descending heights. A run that is pushed onto
s has a height that is bigger or equal to the heights of all remaining runs on the
stack. This is implied by lines 10–15 of Algorithm 4.1. The invariant implies that a
run-terminated prefix interval starting at a run with identifier k can be left-extended
if and only if another run [i′, j′] with equal height j′ − i′ + 1 = j− i + 1 is placed
immediately above k on the stack. Lines 10–15 ensure that a prefix interval from
the run with identifier k to the run [i′, j′] with identifier k′ is spanned. The invariant
itself ensures that k′ must be placed immediately above k on the stack.

If we have this situation (k′ is immediately above k on the stack, k′ is popped,
both runs have the same height) we can extend the run-terminated prefix interval
of k. Because k′ is popped, we can assume that RPE[k′] induces a left-maximal
run-terminated prefix interval starting at k′. Thus, by setting RPE[k] = RPE[k′], a
left-maximal run-terminated prefix interval starting at k is induced. Because k′ was
pushed to the stack after k, RPE[k] induces a longer prefix interval than RPE[k′]. This
means that no length-maximal run-terminated prefix interval can start at run k′.
Therefore, we set RPE[k′] = ⊥ to match Definition 4.7 of the RPE-array. The whole
left-extension process is shown in lines 26–28 of Algorithm 4.1.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 91

In other words, let 〈w, [i, j]〉 be a length-maximal run-terminated prefix interval,
and let 0 = x1 < . . . < xm = w − 1 be numbers such that [LFxr [i], LFxr [j]] ∈
R for all r ∈ [1, m]. The numbers x1, . . . , xm thus describe columns of the prefix
interval that coincide with runs. Algorithm 4.1 then starts by left-extending the run-
terminated prefix interval starting at xm−1. This left-extension ends at xm, and the
run-terminated prefix interval starting at xm is not length-maximal, so the RPE-value
is cleared. Afterwards, it left-extends the run-terminated prefix interval starting
at xm−2 and clears the RPE-value of xm−1. Repeating this process shows that only
the length-maximal run-terminated prefix interval starting at x1 remains, all other
left-extensions are cleared.

Note that it is still unproblematic if a run k is pushed onto the stack multiple times.
After the first time, PE[k] induces a left-maximal prefix interval starting at k. Also,
RPE[k] induces a run-terminated left-maximal prefix interval starting at k. When k is
pushed onto the stack s again, it might be the case that RPE[k] is set to ⊥ because
the prefix interval was not length-maximal. However, PE[k] still points to the end
of the length-maximal prefix interval starting at k. Therefore, no other run k′ can be
pushed onto the stack when k is handled a second time. Therefore, the lines 21–28
will not be executed, and the value of RPE[k] remains unchanged.

We now come to the run-time of Algorithm 4.1. This run-time is determined by
the overall number of executions of the inner loop from lines 9–29. Within each
iteration of the loop, a run is either pushed to the stack or popped from the stack.
The overall run-time thus equals two times the number of runs that are pushed to
the stack during execution.

Each run [i, j] with identifier k is pushed on the stack once by line 8 of Algorithm
4.1. Additionally, k can be pushed to s by line 15. This can happen at most j− i + 1
times: Before the outer loop (lines 4–29), at most j− i + 1 PE-values point into [i, j],
i.e. PE[k′] ∈ [i, j] for some k′ ∈ [1, |R|]. The PE-values pointing into [i, j] must be
distinct because they are inherited from the LF-mapping. During the algorithm,
two cases can happen: in the first case, a PE[k′]-value belongs to a run where a
left-extension through k is not possible. In this case, k is not pushed onto the stack
during the whole algorithm. In the second case, PE[k′] belongs to a run where a
left-extension through k is possible. In this case, after k′ has been popped from the
stack, PE[k′] is updated in line 25 so PE[k′] 6∈ [i, j] holds afterwards. This means that
the run k′ cannot cause a second push of k onto the stack.

92 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

To summarize, each run [i, j] is pushed at most j− i + 2 times to s. The overall
number of runs pushed to the stack can therefore be bound by ∑[i,j]∈R j− i + 2 =

|R|+ ∑[i,j]∈R j− i + 1 = |R|+ n. The overall run-time thus is O(|R|+ n) = O(n).

Corollary 4.8. Let S be a null-terminated string of length n with BWT L. The set RP of
all length-maximal run-terminated prefix intervals can be computed in O(n) time using the
following steps:

• Computation of a Run-LF support for L in O(n) time.

• Computation of the RPE-array with Algorithm 4.1 in O(n) time.

A summary of the results from this section is given in Corollary 4.8. Despite the
non-trivial arguments for the correctness and worst-case run-time of Algorithm 4.1,
the algorithm itself is easy enough to be implemented.

Regarding the integration of tunneling into the block-sorting compression chain,
we have finished the first part: devising a restricted class of prefix intervals where

• any subset of the prefix intervals can be tunneled.

• efficient computation of the prefix intervals is possible.

Our next goal will be to show how the components Dout and Din can be efficiently
encoded.

4.1.3 Tunnel encoding

In Section 3.2 we have seen how a tunneled BWT can be encoded. A tunneled BWT
requires two additional bit-vectors Din and Dout which are used to encode the starts
and the ends of the tunnels. A possible mechanism to tunnel a single prefix interval
then works as follows: let 〈w, [i, j]〉 be a prefix interval of width w ≥ 2 in a string S
of length n with BWT L.

1. initialize two bit-vectors Din and Dout of size n + 1 with ones.

2. initialize a bit-vector M of size n with zeros.

3. mark the tunnel start by setting Din[i..j] = 10j−i.

4. mark the tunnel end by setting Dout[LFw−1[i]..LFw−1[j]] = 10j−i.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 93

5. mark the entries to be removed by setting M[LFx[i + 1]..LFx[j]] = 1j−i

for all x ∈ [0, w− 2].

6. remove entries L[y], Dout[y] and Din[LF[y]] when M[y] = 1 holds.

An exemplaric execution of this mechanism is shown in Figure 4.4.
In the case of run-terminated prefix intervals, the start and end column of each

prefix interval coincide with a run. For any run-terminated prefix interval 〈w, [i, j]〉,
[i, j] ∈ R and [LFw−1[i], LFw−1[j]] ∈ R holds. Also, if only length-maximal run-
terminated prefix intervals are tunneled, the prefix intervals are overlayable. This
implies that a single run [i, j] ∈ R is either

• a normal run where prefix intervals can point through.

• the start of a run-terminated prefix interval.

• the end of a run-terminated prefix interval.

• both the start and end of a run-terminated prefix interval if the width of the
prefix interval is one.

The idea for the encoding of a tunneled BWT when only length-maximal run-
terminated prefix intervals are tunneled comes from [Bai18]. Instead of encoding the

i L[i] Dout[i] M[i] Din[i] F[i]
1 C $
2 C A

3 C A

4 G C

5 T C

6 T C

7 A G

8 A T

9 $ T

10

1 0 1

0 0 0

0 1 0

1 0 1

1 0 1

0 0 1

1 0 1

1 1 0

1 0 1

1 1

L Dout Din

C 1 1

C 0 0

G 1 1

T 1 1

T 0

A 1 1

0

$ 1 1

1 1

L aux

C 3
C

G

T 2
T

A 1
A

$

Figure 4.4: Encoding variants of a tunneled BWT with length-maximal run-terminated prefix
intervals. The BWT and the prefix intervals P = 〈3, [7, 8]〉 and P′ = 〈1, [1, 3]〉
are identical to those of Figure 4.2. The left-hand side shows the columns of
the prefix intervals marked in L and F. Additionally, the components of the
tunneling mechanism before entry removal are shown. The middle shows the
emerging tunneled BWT. The right-hand side shows a special encoding where
the information of a tunnel start and end is saved only for the runs of the BWT.

94 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

tunnel starts and ends in two bit-vectors Dout and Din, the information is contained
in a single vector aux of a maximum size of |R|. The vector aux is a fusion of Dout

and Din which is trimmed to a maximum length of |R|. The vector has an alphabet
size of two, indicating which of the above cases pertain to a run. Information about
the height of a tunnel start or end is acquired by measuring the height of the
corresponding run in L. As a tunnel must then start or end at a run in L with a height
greater than one, we can reduce the size of aux to |Rh>1|, where

Rh>1 := { [i, j] ∈ R | j− i + 1 ≥ 2 }.

The setRh>1 indicates the number of runs in the tunneled version of L with a height
greater than 1. A definition of aux is given by

aux[k] :=



0 , if no tunnel starts or ends at the k-th run with a height greater one.

1 , if a tunnel starts at the k-th run with a height greater one.

2 , if a tunnel ends at the k-th run with a height greater one.

3 , if a tunnel starts and ends at the k-th run with a height greater one.

Figure 4.4 shows an example of this special encoding. Regarding the “normal mech-
anism” of tunneling a prefix interval, the following changes have to be made:

• tunnel starts and ends are marked in a vector aux of length |R|. After the
tunneling process, the vector aux is trimmed to length |Rh>1|.

• no entries at the start or end of a tunnel should be marked by the mechanism.
This ensures that the height information of a tunnel is available.

Special attention should be given to the second item in the above list. In the case
that two length-maximal run-terminated prefix intervals overlap, the wider prefix
interval will mark entries in the start and end of the shorter prefix interval. While
this is not a problem, it is important that no entries at the start or end of a prefix
interval are marked by the marking routine of the prefix interval itself. Moreover,
as run-terminated prefix intervals can overlap, we must avoid setting duplicate
markings in M. This means that we must not set an entry M[i]← 1 multiple times
to ensure linear run-time.

Algorithm 4.2 shows an encoding mechanism for this special situation. The al-
gorithm expects a modified version of the array RPE from Definition 4.7 as input.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 95

Data: BWT L of a null-terminated string S of length n, Run-LF support, RPE-array where all prefix intervals which
should not be tunneled contain a ⊥.

Result: Encoding of a tunneled BWT with the components L and aux.

1 initialize a bit-vector M of size n with zeros
2 initialize an array aux of size |R| with zeros

3 for r ← 1 to |R| do
4 if RPE[r] 6= ⊥ then
5 k← r
6 i← selectBR (1, k)
7 j← selectBR (1, k + 1)− 1

8 aux[k]← aux[k] + 1 // set tunnel start marking
9 k′ ← k

10 i′ ← LFR[k]
11 while i′ 6= RPE[k] do // mark entries to be removed

12 M[i′ + 1..i′ + j− i]← 1j−i

13 k′ ← rankBR (1, i′)
14 h← i′ − selectBR (1, k′)
15 if RPE[k′] = ⊥ then // no prefix interval, use normal navigation
16 i′ ← LFR[k′] + h

17 else // jump over prefix interval using RPE
18 i′ ← RPE[k′] + h

19 aux[k′]← aux[k′] + 2 // set tunnel end marking
20 RPE[k′]← i // set a pointer from the last column to i

// correct markings of end-columns using pointers to start columns
21 for k← 1 to |R| do
22 if aux[k] ≥ 2 then
23 i← RPE[k]
24 i′ ← selectBR (1, k)
25 j′ ← selectBR (1, k + 1)− 1
26 M[i′..j′]← M[i..i + j′ − i′]

// shorten L and aux
27 p← 1 // output position in L
28 q← 1 // output position in aux
29 k← 0 // current run
30 c← $ // character of current run
31 h1 ← 1 // current run has height one
32 for i← 1 to n do
33 if M[i] = 0 then
34 L[p]← L[i]
35 p← p + 1
36 if c 6= L[i] then // start of a new run
37 c← L[i]
38 k← k + 1
39 h1 ← 1

40 else if h1 = 1 then // current run has height greater than one and is processed the first time
41 aux[q]← aux[k]
42 q← q + 1
43 h1 ← 0

44 trim L to size p
45 trim aux to size q
46 return 〈L, aux〉

Algorithm 4.2: Computation of a tunneled BWT encoding when only run-terminated
length-maximal prefix intervals are considered.

96 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

Each length-maximal run-terminated prefix interval starting at a run with identifier
k which should not be tunneled must satisfy RPE[k] = ⊥. This means that we can
select the prefix intervals to be tunneled by clearing entries in RPE.

The algorithm starts by marking entries in M in the lines 3–20. More precisely, the
algorithm marks entries in all columns of a prefix interval except for the start column.
To avoid duplicate markings, the algorithm checks if prefix intervals overlap in lines
15–18. If this is the case, the algorithm uses RPE to jump over all remaining columns
of the overlapping prefix interval. During this first loop, the algorithm also prepares
the markings in aux (lines 8 and 19).

Moreover, the algorithm sets a pointer from the run coinciding with the last
column of a prefix interval to the start of the prefix interval in line 20. The reason for
this pointers is as follows: after lines 3–20, the algorithm has marked the end columns
of all prefix intervals. This behavior is not desired. However, it could happen that
entries in the start column of a prefix interval are marked because of overlappings.
To this end, the lines 21 – 26 copy the markings from the start column to the end
column of each interval. This ensures a desired marking even if prefix intervals
overlap.

The remaining lines of the algorithm then remove all marked entries from L and
shorten aux. The removal of marked entries uses only the variable j and is performed
in the lines 27, 32–35 and line 44. The shortening of aux is a bit more complicated: in
the case that a new run in the shortened string L starts (line 36), a variable h1 is set to
one. When no new run starts and the variable h1 is set to one, we know that a run
with a height greater than one is processed for the first time (line 40). After copying
the value of aux, setting h1 ← 0 then ensures that no additional output is written to
aux for the remaining characters of the current run.

Overall, Algorithm 4.2 requires O(n) time to compute this specially encoded
BWT, using Run-LF support and a subset of length-maximal run-terminated prefix
intervals marked in the RPE-array.

For the sake of thoroughness, we also present a decoding algorithm transforming
a tunneled BWT in Form of L and aux to a tunneled BWT using the components L,
Din and Dout. Similar to Algorithm 4.2, Algorithm 4.3 uses a couple of variables to
indicate the current run with a height greater one. In the case that a new run starts
(line 10), a variable h1 is set to one. When the run has a height greater than one (line
18), the variable kh>1 is incremented by h1. Setting h1 to zero afterwards ensures that
kh>1 points to the same run for all remaining characters of the run.

4.1 R U N - T E R M I N AT E D P R E F I X I N T E RVA L S 97

The difference between the tunneled BWT encoding in form of 〈L, aux〉 and the
encoding in form of 〈L, Din, Dout〉 can be seen in Figure 4.4. Looking at the differences,
the algorithm must handle two special cases. Let kh>1 be the start of a tunnel which
is not also the end of a tunnel, i.e. aux[kh>1] = 1. Then, the algorithm must trim the
length of the run in L to one. Also, only one 1-bit in Dout corresponds to the start of
the tunnel. This special case is handled by the lines 23–26 of Algorithm 4.3. The other
special case occurs when kh>1 is the end but not also the start of a prefix interval, i.e.
aux[kh>1] = 2. In this case, only one 1-bit in Din corresponds to the tunnel end. This
special case is handled by the lines 27–29 of Algorithm 4.3.

The algorithm uses the special values of aux to facilitate case distinctions regarding
bits to be set in Din and Dout in lines 21–22. If the least significant bit in aux is set,
aux[kh>1] ∈ {1, 3} is implied, so a tunnel start is handled (line 21). If the most

Data: Tunneled BWT 〈L, aux〉 encoded by Algorithm 4.2.
Result: Tunneled BWT with the components L, Dout and Din.

1 ñ← size of L
2 let Dout be a bit-vector of size ñ + 1
3 let Din be a bit-vector of size ñ + 1
4 p← 1 // current output position in L and Dout

5 q← 1 // current output position in Din

6 kh>1 ← 0 // current run with height greater one
7 c← $ // last character processed in L
8 h1 ← 1 // current run has height of one
9 for i← 1 to ñ do

10 if L[i] 6= c then // start of a new run
11 c← L[i]
12 h1 ← 1

13 L[p]← L[i]
14 Dout[p]← 1

15 p← p + 1

16 Din[q]← 1

17 q← q + 1

18 else
19 kh>1 ← kh>1 + h1
20 h1 ← 0
21 dout ← 1− aux[kh>1] div 2
22 din ← 1− aux[kh>1] mod 2
23 if aux[kh>1] 6= 1 then // no tunnel start or both tunnel start and end
24 L[p]← c
25 Dout[p]← dout

26 p← p + 1

27 if aux[kh>1] 6= 2 then // no tunnel end or both tunnel start and end
28 Din[q]← din

29 q← q + 1

30 trim L to size p− 1
31 trim Dout to size p and set Dout[p]← 1

32 trim Din to size q and set Din[q]← 1

33 return 〈L, Dout, Din〉

Algorithm 4.3: Transformation of a tunneled BWT with components L and aux to a
tunneled BWT with components L, Dout and Din.

98 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

significant bit in aux is set, aux[kh>1] ≥ 2 holds, so a tunnel end is handled (line 22).
The remaining transformation is straight forward. The algorithm requires linear
time.

In summary, when only length-maximal run-terminated prefix intervals are tun-
neled, the additional components Dout and Din can be reduced to a vector aux with
size of 2 · |Rh>1| bits. The tunneling process itself can be performed in O(n) time
using Algorithm 4.2. To recover the original string from which the BWT was built, we
can use Algorithm 4.3 to convert the tunneled BWT encoding to the “standardized”
form. Afterwards, we can invert the tunneled BWT with the normal backward steps.

4.2 C O S T M O D E L

The first “milestone” of an integration of tunneling into BWT-based data compressors
has been made. We focused on length-maximal run-terminated prefix intervals,
which allow overlapping prefix intervals. Also, these prefix intervals enable us to
store the additional tunneling information in a vector using at most 2 bits per run of
the underlying BWT.

We now address the final encoding of a tunneled BWT. In the case of a normal
BWT, the bzip2 compressor performs the following post BWT stages:

1. Transformation of the BWT L using move-to-front transform to mtf(L).

2. Application of run-length encoding to mtf(L) to get rle1(mtf(L)).

3. Source encoding of rle1(mtf(L)).

Details regarding the stages can be found in Section 2.2. A plethora of post BWT
stages exist, see e.g. [Abe10]. However, almost all state-of-the-art BWT compressors
include forms of run-length encoding and source encoding as stages in their post
BWT process chain [Abe10]. Therefore, run-length encoding and source encoding
can be seen as the key stages in making BWT compressors successful.

Coming back to the encoding of a tunneled BWT, the simplest way to integrate
tunneling into a BWT data compressor is to apply all post BWT stages of the com-
pressor to both components L and aux, as shown in Figure 4.5. There are several
reasons why this form of integration makes sense. First, the integration is easy and
can be applied to almost all BWT compressors. Also, L and aux both come from the
same source: the original BWT. As L is only a shortened version of the original BWT,
compression of L should work well, and the same should hold true for aux.

4.2 C O S T M O D E L 99

BWT Tunneling
Post BWT

stages
Concaten-

ation
S L

L

aux

c(L)

c(aux)

c(L)c(aux)

Figure 4.5: Integration of tunneling into a BWT-based compressor. Red items belong to
the special Post BWT stages of the underlying compressor. Both L and aux are
encoded using the same procedure.

This approach also offers a good worst-case compression: if we tunnel no prefix
interval at all, L is identical to the original BWT. Therefore, the encoding of L has the
same size as that of the original BWT. If no prefix interval is tunneled, aux contains
only zeros. Almost all state-of-the-art BWT compressors include forms of run-length
encoding. Thus, the overhead of the encoding of aux is about O(log |Rh>1|) bits
in this case. In summary, if no prefix interval is tunneled, about O(log |Rh>1|)
additional bits are required for tunneling integration. This number of additional bits
is insignificant.

Another argument justifying that the post encoding stages of L and aux should be
equal comes from the navigation in a tunneled BWT. In Section 3.2 we have seen
that this navigation is possible using a wavelet tree of L and rank- and select-support
for both Din and Dout. Thinking about the operations of a wavelet tree, it is clear
that a rank- and select-support of bit-vectors is nothing else than a wavelet tree of
the bit-vector. To put this differently, if all components L, Dout and Din are encoded
in wavelet trees, navigation in a tunneled BWT can be performed efficiently. This
indicates that a similar encoding for all related tunneled BWT components enables a
certain property of the tunneled BWT. In our case, we are interested in compression,
so encoding both components L and aux with the same mechanism seems to be a
good idea.

For the aforementioned reasons we decided to use the same compression for both
L and aux. Additionally, we assume that the BWT post stages make use of some
form of run-length encoding. This circumstance allows us to compute a “rating” of
prefix intervals to be tunneled as follows. Each prefix interval removes a certain
amount of characters from L when being tunneled. In a normal BWT, given a prefix
interval 〈w, [i, j]〉 this number corresponds to (w− 1) · (j− i). If we use run-length
encoding, less characters are removed because each run [i, j] ∈ R is encoded using
1 + blog2(j− i + 1)c characters. The rating of a prefix interval now consists of the

100 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

number of characters it removes in a run-length encoded BWT. More precisely, let L

be the normal BWT, and let L̃ and aux be the tunneled BWT obtained by tunneling
only the considered prefix interval. The rating of the prefix interval is then given by
|rle(L)| − |rle(L̃)|.1

The rating of a prefix interval 〈w, [i, j]〉 can be computed by enumerating all
columns of a prefix interval except for the start and end column. For each column,
we determine the surrounding run [i′, j′] ∈ R and subtract the length of the run-
length encoded shortened run from the length of the run-length encoded normal
run. In other words, when the prefix interval is tunneled, exactly 1 + blog2(j′ −
i′ + 1)c − (1 + blog2(j′ − i′ + 1− (j − i))c) characters are removed from the run-
length encoding of the run [i′, j′]. Thus, the rating consists of the sum of all removed
characters. Note that we have to exclude the start- and end-column of a prefix
interval because we use the special tunnel encoding where no characters from the
start- and end-column are removed.

Definition 4.9 (Length-maximal run-terminated prefix interval rating). Let L be a
BWT of a null-terminated string S of length n. LetR be the runs in L, and let BR be
the component of a Run-LF support. The rating array RPTC is an array of size |R|
which is defined as follows:

• Let k be an identifier of a run in L where a length-maximal run-terminated
prefix interval 〈w, [i, j]〉 starts, i.e. k = rankBR(1, i). Let [i0, j0], . . . , [iw−1, jw−1] ∈
R be the runs where the prefix interval points through, i.e. [LFx[i], LFx[j]] ⊆
[ix, jx] for all x ∈ [0, w− 1]. Then,

RPTC[k] :=
w−2

∑
x=1
blog2(jx − ix + 1)c − blog2(jx − ix + 1− (j− i))c.

• If k identifies a run where no length-maximal run-terminated prefix interval
starts, then RPTC[k] := 0.

The computation of the rating array RPTC is shown in Algorithm 4.4. The al-
gorithm uses the RPE - array from Definition 4.7 to indicate runs where a length-
maximal run-terminated prefix interval starts. The correction term in line 14 is
required because the algorithm also enumerates the end column of each prefix

1 The computation of such a rating is not easy: a prefix interval could point through the same run
multiple times. Instead, we use a simpler rating system by assuming that a prefix interval points
through a run only once.

4.2 C O S T M O D E L 101

Data: Run-LF support, RPE-array of all length-maximal run-terminated prefix intervals.
Result: RPTC array, for each prefix interval storing the number of characters it removes when being tunneled in a

run-length encoded BWT.

1 initialize an array RPTC of size |R| with zeros
2 for r ← 1 to |R| do
3 if RPE[r] 6= ⊥ and RPE[r] 6= LFR[r] then // prefix intervals with width ≥ 2
4 k← r
5 i← selectBR (1, k)
6 j← selectBR (1, k + 1)− 1

7 x ← LFR[k]
8 while x 6= RPE[k] do
9 k′ ← rankBR (1, x)

10 i′ ← selectBR (1, k′)
11 j′ ← selectBR (1, k′ + 1)− 1

12 RPTC[k]← RPTC[k] + blog2(j′ − i′ + 1)c − blog2(j′ − i′ + 1− (j− i))c
13 x ← LFR[k′] + (x− i′)

14 RPTC[k]← RPTC[k]− blog2(j− i + 1)c

15 return RPTC

Algorithm 4.4: Computation of the length-maximal run-terminated prefix interval rating
array RPTC.

interval because RPE “points behind” this column. As the algorithm enumerates
all columns of a prefix interval, the complexity of the algorithm is identical to the
sum of widths of all length-maximal run-terminated prefix intervals. According
to Lemma 4.4, this sum is bounded by n, so Algorithm 4.4 has a worst-case time
complexity of O(n). Note that the computation of the binary logarithm blog2(x)c
can be performed efficiently [War13]: most modern computer platforms include
special processor instructions allowing to compute this logarithm efficiently.

When thinking about prefix intervals to be tunneled, Figure 4.6 shows that it is not
a good idea to tunnel all length-maximal run-terminated prefix intervals. Despite
the fact that this approach produces the shortest string L, the costs of encoding aux

outweigh the benefits in many cases.
The reason for this is that the encoding size of aux increases when more prefix

intervals are tunneled. If no prefix interval is tunneled, aux consists only of zeros,
so aux contains only one run. When tunneling one prefix interval, aux contains two
non-zero entries for the start and the end of the tunnel. This means that the number
of runs in aux is increased from 1 to at least 3, or maximum 5. Therefore, tunneling
of a prefix interval increases the number of runs in aux and thereby makes aux less
compressible.

A possible strategy would be to tunnel e.g. only the best 10% of prefix intervals.
Best prefix intervals here means that the considered prefix intervals have the highest
rating of all possible prefix intervals. However, as Figure 4.6 shows, this approach

102 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

0 % 20 % 40 % 60 % 80 % 100 %

alice29.txt

bible.txt

nci

sources

proteins

einstein.en.txt

kernel

hg38

amount of rating-sorted tunneled prefix intervals

best
compression

worst
compression

Figure 4.6: Compressibility of a tunneled BWT using block-sorting compression. The com-
pressibility depends on the number of tunneled length-maximal run-terminated
prefix intervals. The image shows only selected test files, an image with all test
files is shown in Figure B.1. A similar image was already published in [BD19]
© 2019 IEEE.

works in only a few cases. Also, the approach does not consider overlappings
between prefix intervals, possibly reducing the number of characters that can be
removed from L. Therefore, we need a more sophisticated approach for the successful
integration of tunneling. We will present some strategies in Section 4.3. Beforehand,
we need a cost model that allows for the comparison of tunneling benefits and costs.

4.2.1 Definition

The benefits and costs of tunneling strongly depend on the post BWT stages in
the compression chain. A possibility would be to develop a special cost model for
each possible compression chain. The problem with this approach is that tunneling
integration must be adapted for each enhanced BWT compressor.

Instead, we will present the uniform cost model as presented in [Bai18] and
[BD19]. The cost model is based on a run-length encoded and source encoded BWT.
As discussed in the beginning of this section, all state-of-the-art BWT compressors
make use of different forms of these BWT post stages.

Another difficulty of developing a cost model is that it must work a priori: de-
cisions about tunneling have to be made on the basis of the cost model. Applying
the cost model after prefix intervals have been tunneled is similar to a trial-and-
error method that forces us to revert the tunneling in bad cases. This is impractical
because the time-consuming tunneling operations have to be performed multiple
times. However, an a priori cost model cannot reflect all effects of tunneling to a

4.2 C O S T M O D E L 103

BWT. For example, prefix intervals can overlap, reducing the number of removed
characters. Also, the model cannot foresee the run-length encodings of all runs,
making estimations about the character frequencies difficult.

A circumstance that simplifies the cost model is that the cost model must not
precisely foresee how many bits the tunneling of a prefix interval saves and costs.
In other words, there is no need to precisely determine the number of saved bits
before tunneling. Instead, it is important that the cost model reflects the impact of
tunneling on the compression rate. In this case, a good tunnel choice in the model
will produce a good compression with the underlying compressor.

We thus introduce a couple of relaxations that make the definition of a cost model
easier. Our first assumption is that the two run-characters 0rle and 1rle used to
encode runs in run-length encoding occur with the same frequency. This makes the
estimation about tunneling benefits possible. Let L be a BWT of size n, where

• nrle := |rle(L)| is the length of the run-length encoding.

• rc := nrle − |R| is the number of “run-characters” in rle(L).

• frle(c) := |{ [i, j] ∈ R | S[i] = c } is the frequency of the characters c ∈ Σ in
rle(L).

The size of a run-length encoded and source-encoded BWT can be approximated by

nrle · H(rle(L)) ≈ log2(nR!)︸ ︷︷ ︸
full information

− ∑
c∈Σ

log2(frle(c)!)︸ ︷︷ ︸
“non-run-characters”

− 2 · log2((rc/2)!)︸ ︷︷ ︸
run-characters

.

Now, let 〈L̃, aux〉 be a tunneled BWT obtained by tunneling L. The effect of tunneling
L is that the runs in L are shortened. Therefore, the frequencies of characters at the
start of a run do not change, i.e. frle is identical for both L and L̃. Let

• t be the number of length-maximal run-terminated prefix intervals that were
tunneled.

• tc := |rle(L)| − |rle(L̃)| be the number of characters removed from L.

104 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

By using these variables, the benefit of tunneling can be approximated with

nrle · H(rle(L))− (nrle − tc) · H(rle(L̃))

≈ log2(nrle!)− log2((nrle − tc)!) + ∑
c∈Σ

log2(frle(c)!)− ∑
c∈Σ

log2(frle(c)!)

− 2 · log2((rc/2)!) + 2 · log2(((rc− tc)/2)!)

= log2

(
nrle!

(nrle − tc)!

)
− 2 · log2

(
(rc/2)!

((rc− tc)/2)!

)
(4.2)

≈ log2
(
(nrle)

tc)− 2 · log2(
(
(rc/2)tc/2

)
(4.3)

= tc · log2(nrle)− tc · log2(rc) + tc

= tc · (1 + log2 (nrle/rc)) .

The transition from line (4.2) to line (4.3) is possible because we assume that the
number of tunneled characters tc is much smaller than the amount of run-characters
rc. Therefore, we assume that tc� rc and tc� nrle hold. Dividing the faculty nrle!
by (nrle − tc)! leaves only tc factors over which all are very close to nrle. The same
holds true for the content of the second logarithm in line (4.2).

Estimations about the costs of encoding the additional component aux are more
difficult. We do not know where the tunnel start and end markings will be placed
before starting the tunneling process. Our first assumption is that the markings are
evenly distributed over aux. Furthermore, we assume that tunnel starts and ends
are sparse, so the majority of entries in aux indicate “normal” runs. The reason is
that we assume that only a couple of runs belong to the start or end of a length-
maximal run-terminated prefix interval. Also, we assume that the number of “good
candidates” to be tunneled is even smaller. As a consequence, we assume that no
length-maximal run-terminated prefix interval of length one is tunneled, because it
brings no benefit at all.

Assumptions about the sparseness of tunnel start and end markings in aux lead to
the implication that only runs of zeros in aux exist, see also Figure 4.7. Those runs
are interrupted by exactly 2 · t markings for tunnel starts and ends, so we assume
that aux contains 2 · t + 1 runs of zero-characters. Because we do not know where
the tunnel markings in aux will be placed, we assume that the entries are distributed
evenly, see Figure 4.7. This means that the average length of a zero-run is given by
rh>1−2·t

2·t+1 characters, where rh>1 := |Rh>1| is the number of runs with height greater
than one. Run-length encoding will transform such a run to a new sequence of length

4.2 C O S T M O D E L 105

aux

0
0
...
0
2
0
0
...
0
1
0
0
...

≈ rh>1−2·t
2·t+1

≈ rh>1−2·t
2·t+1

rle(aux)

0
0rle

...
1rle

2
0
1rle

...
0rle

1
0
1rle

...

≈ log2

(
rh>1−2·t

2·t+1

)

≈ log2

(
rh>1−2·t

2·t+1

)

Figure 4.7: Expected structure of the aux-component (left-hand side) and expected run-
length encoding of aux (right-hand side). The 2 · t tunnel start and end markings
are evenly distributed over aux. The average length of a zero-run in aux is rh>1−2·t

2·t+1 .

log2(
rh>1−2·t

2·t+1). This allows us to estimate the length of aux when using run-length
encoding:

|rle(aux)| ≈ 2 · t︸︷︷︸
tunnel markings

+ (2 · t + 1) · log2

(
rh>1 − 2 · t

2 · t + 1

)
︸ ︷︷ ︸

run-length encoded zero-runs

.

To approximate the size of the run-length encoded and source encoded aux-
component, we need information about the entropy H(rle(aux)). This is even harder
to estimate because the character frequencies in rle(aux) depend on the length of
rle(aux) which itself depends on the number of tunnels. We make the following
additional assumptions:

• The fewest characters in aux are tunnel starts and ends, each occurring exactly
t times.

• rle(aux) contains about 2 · t + 1 zeros, which indicate the start of a zero-run.

• The most frequent characters are run-characters, i.e. characters that belong to
the run-length encoding of a zero-run. About (2 · t + 1) ·

(
log2

(
rh>1−2·t

2·t+1

)
− 1
)

of these characters will occur in aux.

106 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

0 1

0 1 0 1

0 1

0rle 1rle 0
1 2

category character code
run-length
encoding
normal run
tunnel
markings

0rle 00

1rle 01

0 10

1 110

2 111

Figure 4.8: Huffman code for the characters in a run-length encoded aux-component. The
least frequent characters are tunnel markings, the most frequent characters are
run-length encoding characters.

By using the above numbers, we could compute an approximation of H(rle(aux)).
However, we prefer a much simpler method here: Huffman coding [Huf52]. As men-
tioned in Section 2.2.1, Huffman coding is optimal. Therefore, |rle(aux)| · H(rle(aux))

is approximately the same as the size of the Huffman encoding of rle(aux). Regarding
the above assumptions about character frequencies in rle(aux), a possible Huffman
code for rle(aux) is shown in Figure 4.8.

With this code, an approximation of the size of the run-length encoded and source-
encoded aux-component is given as follows:

|rle(aux)| · H(rle(aux))

≈ 2 · t · 3︸ ︷︷ ︸
tunnel markings

+ (2 · t + 1) · 2︸ ︷︷ ︸
zeros

+ (2 · t + 1) ·
(

log2

(
rh>1 − 2 · t

2 · t + 1

)
− 1
)
· 2︸ ︷︷ ︸

run-length encoding characters

= 10 · t + 2 + (4 · t + 2) · log2

(
rh>1 − 2 · t

2 · t + 1

)
− 4 · t− 2

= 6 · t + 4 · (t + 0.5) · log2

(
rh>1 + 1
2 · t + 1

− 1
)

= 6 · (t + 0.5)− 3 + 4 · (t + 0.5) · log2

(
rh>1 + 1
2 · t + 1

− 1
)

= (t + 0.5) · (6 + 4 · log2

(
rh>1 + 1
2 · t + 1

− 1
)
)−O(1).

We sum up these results in the following definition.

Definition 4.10 (Tunneling cost model). Let L be a BWT of a null-terminated string S.
Let r be the number of runs in L, and let rh>1 be the number of runs in L with height
greater one. Let nrle be the length of the run-length encoding of L, i.e. nrle := |rle(L)|,
and define rc := nrle − r.

4.2 C O S T M O D E L 107

The benefit of removing tc run-characters from L is determined by the function

benefit(tc) := tc ·
(

1 + log2

(nrle

rc

))
.

The cost of tunneling t length-maximal run-terminated prefix intervals is deter-
mined by the function

cost(t) := (t + 0.5) ·
(

6 + 4 · log2

(
rh>1 + 1
2 · t + 1

− 1
))

.

Definition 4.10 constitutes our cost model. As a reminder, the cost model is in-
dependent of the used BWT post compression stages. Values for tc and t can be
determined by the RPTC array. However, a lot of unproven assumptions were made
to set up the cost model. Thus, the next section will validate the cost model and
show that the model is appropriate for tunneling decisions.

4.2.2 Validation

To validate the cost model, we set up the following experiment: we sorted prefix
intervals to be tunneled according to their rating. Furthermore, we ignored prefix
intervals with a zero rating. Then, we tunneled the highest rated p percent of prefix
intervals, where p ∈ {0, 2, 4, . . . , 100}. After the tunneling process, we measured
the amount of characters removed from the run-length encoding of the BWT. This
corresponds to the variable tc in the cost model. Also, we keep track of the number
of tunnels t.

Then, for each file and its corresponding value of p, we computed a number
between 0 and 1 which indicates the relative compressibility. A 0 means that the
compressibility was best under all other p-values of that file, while a 1 indicates the
worst compressibility. These numbers are similar to the color values of files in Figure
4.6.

The relative compressibility numbers of the cost model were computed using
the difference between the theoretical benefit and cost for the file when tunneling t
prefix intervals that remove tc characters. In the case of real compressors, we took
the best and worst compression result for each file and scaled the other compression
results of that file accordingly.

We then compared the discrepancy between cost model and compressor by sub-
tracting the relative compressibility of the compressor from the relative compressibil-

108 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

0 % 20 % 40 % 60 % 80 % 100 %
−100 %

−50 %

0 %

50 %

100 %

amount of rating-sorted tunneled prefix intervals

di
sc

re
pa

nc
y

of
th

e
re

la
ti

ve
co

m
pr

es
si

bi
lit

y
be

tw
ee

n
co

st
m

od
el

an
d

co
m

pr
es

so
r

bw94 post stages

0 % 20 % 40 % 60 % 80 % 100 %
−100 %

−50 %

0 %

50 %

100 %

amount of rating-sorted tunneled prefix intervals

bcm post stages

canterbury largecanterbury silesia pizzachili repetitive genomes

Figure 4.9: Discrepancy between estimated relative compressibility and real relative com-
pressibility in conjunction with tunneling. The discrepancies are average values
for all files of a text corpus. See Chapter A for more information about the test
data. The cost model was tested on the two BWT post stages bw94 and bcm, see
Section B.1. To limit the computation time, we truncated each test file after the
first gigabyte of data.

ity in the cost model. We used two different bwt compressors: bw94 is the scheme as
presented by Burrows and Wheeler in 1994 using move-to-front, run-length encod-
ing and source encoding. Additionally, we used the post stages of another very good
BWT compressor called bcm. More information about both post stages can be found
in Section B.1. More details about the used test data can be found in Section B.1.

The idea behind the experiment is the following: in the case that the discrepancy
between cost model and compressor is zero for all values of p, the cost model is
ideal. It might not be the case that the cost model and compressor achieve the same
benefits in bits in this case. However, the cost model then precisely describes the
effects of tunneling onto the relative compression rate. This is exactly the desired
behavior of the cost model.

The average discrepancies between cost model and compressor are shown in
Figure 4.9. One can see that the discrepancy is not constantly zero, but very close to
zero for p ∈ [20, 80]. Also it can be seen that the cost model fits better to the bw94
compressor than to the bcm compressor. In general, the discrepancy plots in Figure
4.9 describe monotone increasing functions.

This means that the relative compressibility was under-estimated by the cost
model for p ∈ [0, 20). The relative compressibility in the compressors was worse
than the relative compressibility in the cost model. This results in negative values of
discrepancy. The opposite holds true for p ∈ (80, 100].

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 109

Regarding the cost model, it is very likely that the discrepancy is owed to the
estimation of the component aux in the cost model. In the cost model, the encoding
of aux is a worst-case encoding: we assumed that every run in aux has the same
length, which produces a worst-case run-length encoding of aux. Moreover, we
assumed that the global structure transformations used in the post stages have no
effect on the encoding of aux. As indicated by Figure 4.9, these assumptions hold
true for p ∈ [20, 80]. When the number of tunnels is smaller, aux tends to be better
compressible, causing negative effects in the discrepancy. For p ∈ (80, 100], the
hypothesis of the character frequencies in aux no longer holds true, causing the
source encoding of rle(aux) to grow. This explains the discrepancy for small and big
values of p.

Nonetheless, the cost model has a good fit. Except for some outliers, the discrep-
ancy ranges between −13% and 13% in the bw94 compressor, and between −25%
and 25% for bcm. Figure 4.9 shows almost no kinks in the plots, so we can expect
a steady and precise benefit-cost estimation. For all test files, the optimal value of
p lies between 0 and 80, or very close to p = 80, see Figure 4.6. For p ∈ [0, 80], the
cost model could be designated as conservative, because it typically under-estimates
the compressibility gain of tunneling. However, the more conservative estimation
ensures a good worst-case compression and allows realistic decisions for tunnel
planning.

4.3 T U N N E L P L A N N I N G S T R AT E G I E S

The cost model is the second “milestone” of an integration of tunneling into BWT-
based data compressors. We have seen that it is not worth it to tunnel all length-
maximal run-terminated prefix intervals in most cases because each tunnel produces
a certain cost. The final step that has to be made is to set up a tunnel strategy that
considers both the benefits and costs of tunneling.

In the Chapter 3 it was mentioned that tunnel planning can be difficult. The
problem we face here is something different: we do not want to cover all prefix
intervals. Figure 4.6 clearly has shown that it is not always worth it to tunnel
everything. Instead, we want to maximize the benefit of tunneling using the cost
model from the last section.

In the last section we introduced the rating array RPTC, see Definition 4.9. The
higher the rating of a prefix interval is, the more benefit can be achieved by tunneling

110 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

the prefix interval. The cost of a tunnel is independent from the size of the underlying
prefix interval, so choosing the candidates with the highest rating is a good idea
in general. Indeed, all approaches presented in this section will make use of the
rating array to find a good choice of prefix intervals to be tunneled. The problem lies
elsewhere.

Length-maximal run-terminated prefix intervals can overlap. This means that the
decision of tunneling one prefix interval can have negative side effects on the rating
of other prefix intervals. More precisely, in the case of an overlapping, characters
in the intersection of both prefix intervals cannot be removed twice. Therefore, the
combined benefit of tunneling two prefix intervals can be smaller than the sum of
benefits when tunneling the prefix intervals separately. An example of this situation
is shown in Figure 4.10.

The situation is even more complicated because the possibility of positive side
effects exists. In the case that two non-overlapping prefix intervals with identical
height h point through a run k with height 2 · h, the situation is different. Tunneling
only one prefix interval has the consequence that the run-length encoding of the run
k is shortened from log2(2 · h) = log2(h) + 1 characters to log2(2 · h− (h− 1)) ≈
log2(h) characters. Tunneling only one prefix interval thus brings the benefit of
removing one run-length character. When both prefix intervals are tunneled, the
run-length encoding of k is reduced to only log2(2 · h− 2 · (h− 1)) = log2(2) = 1
character. This means that tunneling one prefix interval increases the rating of the
other prefix interval. An example of this situation is shown in Figure 4.10.

In summary, the decision of tunneling a prefix interval can have both positive and
negative side effects on the ratings of other prefix intervals. This makes the devel-
opment of a strategy difficult. In this section, we will present basic and relatively
easy tunnel planning strategies. The reason for this is that the strategies work well
in practice, are easy to implement and are fast in terms of theoretical and practical
run-time. We will include some aspects on the optimality of the strategies.

However, it could be possible that more sophisticated strategies can be developed,
improving the compression rate even more. We strongly suppose that the tunnel
planning problem with the cost model and side-effects is NP-complete. We clearly
state this as open problems, but for now want to focus on simple strategies that are
“good enough” and “easy enough” to show the potential of tunneling.

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 111

L
...
b

a

a

a

a

a

a

a

a

b
...

L
...
b

a

a

a

a

a

a

a

b

b
...

Figure 4.10: Illustration of side effects of tunneling on the rating of prefix intervals. Length-
maximal run-terminated prefix intervals are indicated by the colored boxes. The
left-hand side shows an example of a negative side-effect. Before the blue prefix
interval is tunneled, the red prefix interval reduces the run-length encoding of
the illustrated run from 1 + log2(8) = 4 characters to just one character. When
the blue prefix interval is tunneled, 4 characters are removed from the run. If the
red prefix interval is tunneled afterwards, it reduces the run-length encoding
from the run from 1 + log2(4) = 3 characters to only one character. The right-
hand side shows an example of a positive side effect. Before the blue prefix
interval is tunneled, tunneling the red prefix interval “reduces“ the run-length
encoding from 1 + blog2(7)c = 3 to 1 + blog2(4)c = 3 characters. After the
blue prefix interval is tunneled, the red prefix interval reduces the run-length
encoding of the run from 1 + blog2(5)c = 3 to 1 + log2(2) = 2 characters.

4.3.1 Hirsch strategy

The first strategy we will present is a pragmatic approach: only prefix intervals that
are profitable should be tunneled. This approach was invented by the author of this
thesis for the use in a student project [Rät19], and is an extension of another strategy
also presented by the author of this thesis [BD19]. A prefix interval is worth being
tunneled if the expected benefit is bigger than the expected tunnel costs.

Let tc be the number of characters that are removed by tunneling one certain prefix
interval. Note that tc is nothing more than an entry in the rating array RPTC, see
Definition 4.9. Using our cost model from Definition 4.10, the benefit of tunneling
this prefix interval then is benefit(tc). The cost of tunneling a prefix interval depends
on the number t of overall tunneled prefix intervals. The average cost per tunnel is
given by costavg(t) := cost(t)

t .

112 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

Thus it is profitable to tunnel the prefix interval if benefit(tc) ≥ costavg(t) holds.
Using the cost model and the definition ε(t) := 0.5

t , the following inequalities are
induced:

benefit(tc) ≥ costavg(t)

⇔ tc ·
(

1 + log2

(nrle

rc

))
≥ t + 0.5

t
·
(

6 + 4 · log2

(
rh>1 + 1
2 · t + 1

− 1
))

⇔ tc · log2

(
2 · nrle

rc

)
≥ (1 + ε(t)) ·

(
6 + 4 · log2

(
rh>1 + 1
2 · t + 1

− 1
))

⇔
tc · log2

(
2·nrle

rc

)
4 · (1 + ε(t))

− 1.5 ≥ log2

(
rh>1 + 1
2 · t + 1

− 1
)

⇔ 2
tc

4·(1+ε(t)) ·log2

(
2·nrle

rc

)
−1.5 ≥ rh>1 + 1

2 · t + 1
− 1

⇔ 2 · t + 1 ≥ rh>1 + 1

2
tc

4·(1+ε(t)) ·log2

(
2·nrle

rc

)
−1.5

+ 1

⇔ t ≥ rh>1 + 1

2
tc

4·(1+ε(t)) ·log2

(
2·nrle

rc

)
−0.5

+ 2
− 0.5 (4.4)

The interpretation of the last inequality in line (4.4) is as follows. The right-hand
side contains only variables that are known before the considered prefix interval is
tunneled. We ignore the ε(t) term as it is very small and disappears for large values
of t, i.e. ε(t) = 0.5

t → 0 for t→ ∞. The left-hand side describes the number of overall
tunnels. Therefore, the benefits of tunneling the prefix interval starting at the run
with identifier k exceed the cost for the tunnel if at least

MT[k] :=
rh>1 + 1

2
RPTC[k]

4 ·log2

(
2·nrle

rc

)
−0.5

+ 2
− 0.5

prefix intervals in the whole BWT are tunneled. This makes sense because the
average cost per tunnel decreases the more prefix intervals are tunneled, i.e. the
function

costavg(t) =
cost(t)

t
=

t + 0.5
t
·
(

6 + 4 · log2

(
rh>1 + 1
2 · t + 1

− 1
))

is a monotone decreasing function for t ∈ [1, rh>1
2]. Thus, the average costs can be

minimized by maximizing the number t of tunnels. On the other hand, each tunnel

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 113

starting at the run with identifier k should be profitable. By the above inequalities,
this is true if MT[k] ≤ t holds. Bringing both conditions together, we are looking for
a maximal set T∗ of run identifiers where MT[k] ≤ |T∗| holds for all k ∈ T∗. The set
can be determined as follows:

1. Compute a maximal number t∗ such that |{ k ∈ [1, |R|] | MT[k] ≤ t∗ }| ≥ t∗.

2. Find T∗ by filtering all values MT[k] satisfying MT[k] ≤ t∗.

The maximal number t∗ is similar to another well-known concept: the Hirsch index
[Hir05]. The Hirsch index is a rating system for the productivity and work impact of
a researcher. Let Q be an array that stores the number of citations of a paper for all
published papers of a researcher. The Hirsch index is the maximum number h∗ such
that at least h∗ entries in Q are greater than or equal to h∗. The difference between
the Hirsch index and the number t∗ is subtle. The Hirsch index is looking for entries
that are greater than or equal to h∗, while we are looking for entries that are smaller
than or equal to t∗. Regarding the similarities and ignoring the subtle difference, this
gives the tunnel planning strategy its name: the Hirsch strategy.

The problem we are facing here is how the maximum number t∗ can be computed.
First of all, we can ignore entries where MT[k] ≥ rh>1+1

1√
2
+2

hold. If a prefix interval

brings no benefit at all, RPTC[k] = 0 holds. By plugging this value into the above
definition of MT we obtain

MT[k] =
rh>1 + 1

20−0.5 + 2
− 0.5 <

rh>1 + 1
1√
2
+ 2

.

Therefore, it is never worth it to tunnel more than rh>1+1
1√
2
+2

prefix intervals. The idea of

an efficient computation of t∗ is to set up a counting array CMT of size rh>1+1
1√
2
+2

which

counts the number of entries in MT which are smaller than a certain amount. More
precisely, CMT is defined as follows:

CMT[i] := |{ k ∈ [1, |R|] | MT[k] ≤ i− 1}|.

The maximal number t∗ then can be found at the largest index where CMT[t∗+ 1] ≥ t∗

is satisfied. This can be checked with a single left-to-right scan of CMT.
Algorithm 4.5 gathers all the ideas of this strategy. Lines 1–4 compute the MT-

array. The expression log2

(
2·nrle

rc

)
can be precomputed. The final expression then

114 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

Data: RPTC array, RPE-array, BWT statistics nrle, rc, r := |R| and rh>1.
Result: Modified RPE-array where all prefix intervals which should not be tunneled contain a ⊥.

// compute MT array
1 initialize an integer array MT of size r
2 for k← 1 to r do

3 p←
RPTC[k]·log2

(2·nrle
rc

)
−2

4
4 MT[k]← (rh>1 + 1)/(2p + 2)− 0.5

// compute counts of distinct MT values

5 initialize an array CMT of size (rh>1 + 1)/(1√
2
+ 2) with zeros

6 for k← 1 to r do
7 if MT[k] < (rh>1 + 1)/(1√

2
+ 2) then

8 CMT[MT[k] + 1]← CMT[MT[k] + 1] + 1

// compute cumulative counts and find maximal t∗
9 t∗ ← 0

10 for t← 1 to (rh>1 + 1)/(1√
2
+ 2)− 1 do

11 CMT[t + 1]← CMT[t + 1] + CMT[t]
12 if CMT[t + 1] ≥ t then
13 t∗ ← t

// choose prefix intervals to be tunneled
14 for k← 1 to r do
15 if MT[k] > t∗ then
16 RPE[k]← ⊥

17 return RPE

Algorithm 4.5: Hirsch tunnel planning strategy. The result of this algorithm can be used
to tunnel a BWT, see Algorithm 4.2.

can be computed by computing the exponent p (line 3), rounding to the next integer
and using bit-shifting in the left direction to compute the power with base two.

Lines 5–8 compute the counts of distinct MT-values that are less than (rh>1 +

1)/(1√
2
+ 2). The entry CMT[MT[k] + 1] is accessed to ensure that zero-values of MT

are handled correctly. Lines 9–13 then compute the final CMT array and thereby
search for the largest index t satisfying CMT[t + 1] ≥ t. As indicated above, this is
the desired maximal number t∗.

Finally, in the lines 14–16, the algorithm clears entries in RPE where it is not worth
to tunnel the prefix interval. This result can be used to compute a tunneled BWT, see
Algorithm 4.2. The algorithm has the worst-case run-time of O(|R|).

Let us shortly revisit the Hirsch strategy. The idea of the strategy is to choose
only prefix intervals which are worth being tunneled. As the average costs decrease
when more prefix intervals are tunneled, the strategy searches for a maximal subset
of prefix intervals such that the benefit of tunneling each prefix interval is bigger
than the average costs. The strategy will thus prefer big prefix intervals, i.e. the final
choice consists of the best p percentage of all prefix intervals regarding the rating
array RPTC.

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 115

62

4646

76487

1636276

59491933

494388

2415128

2450106

be
st

en
co

di
ng

si
ze

de
cr

ea
se

in
by

te
s

0 % 20 % 40 % 60 % 80 % 100 %

alice29.txt

bible.txt

nci

sources

proteins

einstein.en.txt

kernel

hg38

amount of rating-sorted tunneled prefix intervals

best compression worst compression

29 byte

2,547 byte

68,905 byte

1,246,534 byte

55,561,231 byte

466,489 byte

2,392,523 byte

2,292,908 byte

30 byte

3,501 byte

73,729 byte

1,411,600 byte

57,136,707 byte

481,054 byte

2,404,637 byte

2,355,562 byte

Figure 4.11: Optimality of the hirsch and greedy strategy in the bcm compressor. The amount
of tunneled prefix intervals using the hirsch strategy is indicated with blue
pluses. The amount of tunneled prefix intervals using the greedy strategy is
indicated with green crosses. The best encoding size decrease compared to an
compression without tunneling is shown on the right. The encoding size de-
crease of the hirsch and greedy strategy is shown right beside the pluses/crosses.
An image including all test files can be found in Figure B.2. An image measuring
the optimality with block-sorting compression can be found in Figure B.1. A
similar image was already published in [BD19] © 2019 IEEE.

The optimality of the strategy is shown in Figure 4.11. One can see that the strategy
chooses an amount of prefix intervals with good compression. Also, the strategy is
easily implementable. It is noticeable that the strategy chooses less than the optimal
number of prefix intervals to be tunneled in almost all cases. This is owed to the
conservative cost model, see Section 4.2.2.

The strategy however has some downsides. First, the strategy does not consider
overlappings or positive side effects at all. Second, the strategy does not consider
the advantages of a “pawn sacrifice”. This means that it can be beneficial to tunnel
a prefix interval although its benefit does not outweigh its cost: in such a case,
the average tunnel cost decreases. If the negative effect of the additional tunnel is
smaller than the sum of the reduced costs of all other chosen prefix intervals, a “pawn
sacrifice” would make sense. To this end, we will present another strategy which
is able to compensate for these disadvantages. The strategy is already included in
Figure 4.11: the greedy strategy.

116 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

4.3.2 Greedy strategy

A strategy which immediately suggests itself is a greedy strategy. Starting with t = 0,
one chooses the prefix interval with the highest rating and checks if the benefit-cost
difference is better than the current optimum. Repeating these commands until all
prefix intervals have been chosen results in an optimal value t∗ of tunnels to be used.
Additionally, during the choice of a prefix interval, we add the run identifier k of the
start of a prefix interval to an array SPI. The prefix intervals with the best benefit-cost
difference can then be found in SPI[1..t∗].

The strategy is shown in Algorithm 4.6. The greedy approach is quite similar to
the hirsch strategy, but allows the possibility of a “pawn sacrifice”. This means that
the final choice of prefix intervals to be tunneled can include prefix intervals where
the tunnel benefit is less than the average tunnel cost. It is clear that the strategy
is optimal when no side effects between prefix intervals occur. A disadvantage of
this approach is that the prefix intervals have to be sorted according to their rating.
By using a standard sorting algorithm or a heap [Wil64], this takes O(|R| · log |R|)

Data: RPTC array, RPE-array, BWT statistics nrle, rc, r := |R| and rh>1, benefit function

benefit(tc) := tc ·
(
1 + log2

(nrle
rc
))

, cost function cost(t) := (t + 0.5) ·
(

6 + 4 · log2

(
rh>1+1
2·t+1 − 1

))
.

Result: Modified RPE-array where all prefix intervals which should not be tunneled contain a ⊥.

1 let SPI be an array of size r
2 initialize an empty heap H
3 for k← 1 to r do
4 if RPE[k] 6= ⊥ then
5 add 〈k, RPTC[k]〉 to H

6 t← 0
7 tc← 0
8 t∗ ← 0
9 tc∗ ← 0

10 while H is not empty do // greedily choose prefix intervals
11 let 〈k, rptc〉 be the pair with the highest rating rptc in H
12 remove 〈k, rptc〉 from H
13 t← t + 1
14 tc← tc + rptc
15 if benefit(tc)− cost(t) ≥ benefit(tc∗)− cost(t∗) then
16 t∗ ← t
17 tc∗ ← tc

18 SPI[t]← k

19 for i← t∗ + 1 to t do // choose prefix intervals to be tunneled
20 k← SPI[i]
21 RPE[k]← ⊥
22 return RPE

Algorithm 4.6: Greedy tunnel planning strategy. The result of this algorithm can be used
to tunnel a BWT, see Algorithm 4.2.

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 117

time. Therefore, the greedy approach is slower than the hirsch strategy, which takes
only O(|R|) time. Furthermore, the strategy does not consider side-effects between
prefix intervals.

A refined greedy strategy allows one to consider negative side effects between
prefix intervals. This refined greedy strategy is the first published tunnel planning
strategy of all time, presented by the author of this thesis [Bai18]. The idea is to
choose prefix intervals in a greedy manner, similar to Algorithm 4.6. The difference
is that the ratings of prefix intervals are updated when negative side effects with the
currently chosen prefix interval are detected.

The idea of the updating strategy is as follows: if only one prefix interval should
be tunneled, the best one can do is to pick the prefix interval with the highest
rating. Tunneling this prefix interval then causes negative side effects on other prefix
intervals, so the rating has to be updated. Updating the ratings of overlapping prefix
intervals then decreases the rating of some prefix intervals, so the first choice still is
the best. The best choice of two prefix intervals to be tunneled then consists of the
best choice of tunneling one prefix interval and the best choice under the updated
remaining prefix intervals. In other words, the best choice of t tunnels is the same as
the best choice of t− 1 tunnels, extended by the best-rated remaining prefix interval.
Therefore, we assume that Bellman’s principle of optimality [CN09a] is fulfilled.2

This allows us to compute an optimal choice of exactly t prefix intervals for all
possible values of t, and compare the benefit-cost difference of each solution to find
the optimal value t∗. Analogously to the normal greedy strategy from above, we can
use an array SPI to store the sorted prefix intervals.

The greedy strategy that considers negative side effects between prefix intervals
is shown in Algorithm 4.7. The algorithm requires an additional array length that
stores the length of each length-maximal run-terminated prefix interval. Let 〈w, [i, j]〉
be a length-maximal run-terminated prefix interval that starts at the k-th run, i.e.
k = rankBR(1, i). Then, length[k] = w− 1 holds. The length array can be obtained as
a by-product of the rating array computation, see Algorithm 4.4.

The handling of negative side-effects is split into two cases. First, assume that
the current chosen prefix interval P points through another length-maximal run-
terminated prefix interval P′. Such a situation is shown in Figure 4.12. This corre-
sponds to the lines 20–24 of Algorithm 4.7. Now consider a run of height hr where
both P and P′ point through. Let h and h′ be the heights of the prefix intervals P

2 Note that Bellman’s principle only holds true as long as no positive side effects occur.

118 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

Data: RPTC array, RPE-array, BWT statistics nrle, rc, r := |R| and rh>1, benefit function

benefit(tc) := tc ·
(
1 + log2

(nrle
rc
))

, cost function cost(t) := (t + 0.5) ·
(

6 + 4 · log2

(
rh>1+1
2·t+1 − 1

))
, length array

length storing the length of each length-maximal prefix interval starting at the run with identifier k.
Result: Modified RPE-array where all prefix intervals which should not be tunneled contain a ⊥.

1 let SPI be an array of size r
2 initialize an empty heap H
3 for k← 1 to r do
4 if RPE[k] 6= ⊥ then
5 add 〈k, RPTC[k]〉 to H

6 t← 0
7 tc← 0
8 t∗ ← 0
9 tc∗ ← 0

10 while H is not empty do // greedily choose prefix intervals
11 let 〈k, rptc〉 be the pair with the highest rating rptc in H
12 remove 〈k, rptc〉 from H
13 t← t + 1
14 tc← tc + rptc
15 if benefit(tc)− cost(t) ≥ benefit(tc∗)− cost(t∗) then
16 t∗ ← t
17 tc∗ ← tc

18 SPI[t]← k

19 RPTC[k]← 0 // perform rating updates of overlapping prefix intervals

20 foreach run k′ where the length-maximal run-terminated prefix interval starting at run k points through do
21 if RPTC[k′] > 0 then
22 remove 〈k′, RPTC[k′]〉 from the heap H

23 RPTC[k′]← max{RPTC[k′]− length[k′]−2
length[k]−2 · RPTC[k], 0}

24 add 〈k′, RPTC[k′]〉 to H

25 foreach length-maximal run-terminated prefix interval starting at run k′ that points through the run k do
26 if RPTC[k′] > 0 then
27 remove 〈k′, RPTC[k′]〉 from the heap H

28 RPTC[k′]← max{ length[k′]−length[k]
length[k′]−2 · RPTC[k′], 0}

29 length[k′]← length[k′]− (length[k]− 2)
30 add 〈k′, RPTC[k′]〉 to H

31 for i← t∗ + 1 to t do // choose prefix intervals to be tunneled
32 k← SPI[i]
33 RPE[k]← ⊥
34 return RPE

Algorithm 4.7: Greedy tunnel planning strategy with updates. The result of this algo-
rithm can be used to tunnel a BWT, see Algorithm 4.2.

and P′. Without tunneling P, the benefit of tunneling P′ for this single column is
approximately log2(hr)− log2(hr − (h′ − 1)), see Definition 4.9. When P is tunneled,
the height of the run r is reduced by h− 1 characters. Also, the height of the prefix

4.3 T U N N E L P L A N N I N G S T R AT E G I E S 119

x i m

a x i m a

m a x i m a l

m a x i m a l

a x i m a

x i m

x i m

a x i m a

m a a l

m a a l

a a

x i m

Figure 4.12: Effects of tunneling when overlapping prefix intervals are considered. The
left-hand side shows an illustration of three overlapping length-maximal run-
terminated prefix intervals. The right-hand side shows the situation when the
blue prefix interval is tunneled. The height of the red prefix interval is reduced
because the blue prefix interval points through. These cases are handled by the
lines 20–24 of Algorithm 4.7. The length of the green prefix interval is reduced
because it points through the blue prefix interval. These cases are handled by
the lines 25–30 of Algorithm 4.7.

interval P′ is reduced by h− 1 characters. Therefore, the new benefit of tunneling P′

for the same column is about

log2(hr − (h− 1))− log2(hr − (h− 1)− (h′ − 1− (h− 1)))

= log2(hr − (h− 1))− log2(hr − (h′ − 1))

= log2(hr)− log2(hr − (h′ − 1))︸ ︷︷ ︸
benefit when tunneling only P′

−

log2(hr)− log2(hr − (h− 1))︸ ︷︷ ︸
benefit when tunneling only P

 .

Therefore, the rating of P′ could be updated by subtracting the column-wise rating
of P from the column-wise rating of P′. Unfortunately, the rating is stored as a
single number and not column-wise. To overcome this problem, the column-wise
subtraction can be approximated by subtracting the length-reduced benefit of P
from P′:

RPTC[k′]← RPTC[k′]− length[k′]− 2
length[k]− 2

· RPTC[k].

The subtraction of two from each length is done because a row in a prefix interval of
length l has l labels, and in the special case of our tunnel encoding, no labels from
the first and last column of the prefix interval are removed.

The computation of all affected runs (line 20) is straight forward: using the Run-LF
support, we can iterate over all columns of the chosen prefix interval and find the
surrounding runs, see Algorithm 4.4. According to Corollary 4.5, the sum of the

120 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

lengths of all prefix intervals inRP is less than or equal to n. Therefore, the overall
number of updates for the first kind of overlapping prefix intervals is limited by n.
Each update requires updates in the heap, so the overall run-time for these updates
is O(n log2(rh>1)).

We now come to the second kind of updates: an overlapping prefix interval P′ that
points through the chosen prefix interval P. Such updates are performed in the lines
25–30 of Algorithm 4.7. As can be seen in Figure 4.12, tunneling the prefix interval
P trims the height of P′ in the intersection area to one. Therefore, after tunneling
P, tunneling P′ cannot produce any profit in the intersection area. To update the
rating of P′, one could subtract the benefit in the intersection area from the whole
benefit. However, as above, the only available benefit is the benefit of the whole
prefix interval. Therefore, we decrease the benefit by multiplying the whole benefit
by the reduced-length ratio:

RPTC[k′]← (length[k′]− 2)− (length[k]− 2)
length[k′]− 2

· RPTC[k′]

=
length[k′]− length[k]

length[k′]− 2
· RPTC[k′].

The subtraction of two from each length has the same meaning as explained above.
Algorithm 4.7 also updates the length of the overlapping prefix interval P′ in line 29.
The reason is that the prefix interval P′ was “virtually” shortened by the length of P
(minus two).

Enumerating all length-maximal prefix intervals that point through a run k (line 25
of Algorithm 4.7) can be done using a graph. For each run k, we store references to all
run-terminated prefix intervals that point through k. Such a graph can be constructed
by enumerating all columns of all prefix intervals and adding the identifier of the
interval to the run surrounding the current column. According to Corollary 4.5,
this takes O(n) time, and the graph has at most n edges. Thus, at most n updates
of this kind are performed, so the run-time for all updates of the second kind is
O(n log2(rh>1)).

To summarize, the greedy strategy that considers negative side effects has a
worst-case time complexity of O(n log2(rh>1)). It should be noted that the side effect
updates are approximated and do not precisely reflect the situation.

4.4 E X P E R I M E N TA L R E S U LT S 121

4.4 E X P E R I M E N TA L R E S U LT S

We implemented the aforementioned strategies using the cost model from Section
4.2. The implementation is publicly available [Bai20]. The following strategies were
used:

• hirsch: Hirsch strategy from Section 4.3.1.

• greedy: Greedy strategy ignoring negative side effects, Algorithm 4.6.

• gupdate: Greedy strategy that considers negative side effects, Algorithm 4.7.

• debruijn: Tunneling strategy that uses de Bruijn graph edge minimization,
Chapter 5.

The last strategy will be described in the next chapter and is optimized for the
purpose of sequence analysis. The main difference is that it tunnels non-overlapping
prefix intervals, and that it is not possible to reduce the length of the components
Din and Dout. This is a significant difference to the tunneled BWT representation
when only length-maximal run-terminated prefix intervals are tunneled. The latter
allows for the reduction of the size of aux to the number of runs, which typically is
considerably smaller than the length of the string itself.

We enhanced the following BWT compressors with tunneling:

• bw94: block-sorting compression as proposed by Burrows and Wheeler [BW94],
see Section 2.2.4.

• bcm: one of the best open-source available BWT compressor to date [Mur16].

Additionally, we included the following compressors that are using other compres-
sion paradigms:

• xz: one of the best LZ77-based compressors to date. It uses the Lempel-Ziv-
Markov Algorithm [Col10].

• zpaq: one of the best context-mixing compressors to date [Mah09].

More information about the compressors, the used computer platform and the full
benchmark results can be found in Chapter B. We tested the performance of the
compressors with 44 test files coming from 6 different text corpora:

• canterbury: 11 small files between 4 KB and 1 MB.

122 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

• largecanterbury: 3 small files between 2.3 and 4.4 MB.

• silesia: 12 medium-sized files between 5 MB and 49 MB.

• pizzachili: 6 large files between 53 MB and 2108 MB.

• repetitive: 9 large and highly repetitive files between 45 MB and 440 MB.

• gnomes: 3 reference genomes with file sizes between 2500 MB and 2900 MB.

A full description of each corpus and detailed test data statistics can be found in
Chapter A. Figure 4.13 shows the impact of tunneling on the compression rates of
bw94 and bcm. For all strategies except of the debruijn, the encoding size is reduced
by an average of 8% in the case of bw94 and by an average of 10% for bcm. In the
case of the debruijn strategy, tunneling increases the encoding size by an average of
22% for bw94 and 20.5% for bcm. This clearly shows that tunneling has a positive
effect on compression rates when length-maximal run-terminated prefix intervals
with the special tunneled BWT encoding are used. Also, the less desirable results of
the debruijn strategy show that tunneling has to be engineered carefully to achieve
improvements in data compression.

Going more into the details of Figure 4.13, one can see that tunneling has only
minor influence on the compression of most test files. This holds especially true for

− 20% − 10% 0% 10% 20% 30% 40% 50% 60%

bcm-t-debruijn

bw94-t-debruijn

bcm-t-gupdate

bw94-t-gupdate

bcm-t-greedy

bw94-t-greedy

bcm-t-hirsch

bw94-t-hirsch

−20.55

−22.05

10.04

7.91

10.67

8.3

10.26

8.09

Relative encoding size decrease achieved by tunneling (all files)

Figure 4.13: Boxplot of the relative encoding size decrease achieved by tunneling. The box-
plot uses the results of all test files described in Chapter A. The blue boxes
indicate tunneling in conjunction with the bw94 compressor, red boxes indicate
tunneling in conjunction with bcm. The box plots consist of minimum (left
whisker), lower quartil, median and upper quartil (boxes) and maximum (right
whisker). The green lines indicate the average encoding size decrease. Full in-
formation about encoding size decreases for each compressor and each file can
be found in Table B.7. A similar image was already published in [BD19] © 2019
IEEE.

4.4 E X P E R I M E N TA L R E S U LT S 123

the small and medium-sized files from the canterbury corpus, the largecanterbury
corpus and the silesia corpus. Furthermore, the influence of tunneling on compres-
sion rates is small when the underlying data is difficult to compress, which for
example is the case for reference genomes. The best results of tunneling are achieved
when the data is highly repetitive. In the case of text collection files in the pizzachili
corpus or repetitive files from the repetitive corpus, tunneling is able to reduce the
encoding size by up to 55%.

To this end, Figure 4.14 shows the same boxplot for files from the pizzachili corpus
and repetitive corpus. Tunneling shows its full potential for these files: the average
encoding size reduction is approximately 22% for bw94 and 27% for bcm. Because
the debruijn strategy achieves poor results, we omitted the debruijn strategy in this
plot. More information about the improvements of tunneling on the compression
rates can be found in Section B.2.

Next, we want to compare the influence of the tunneling strategy on the com-
pression results. As Figures 4.13 and 4.14 show, the greedy strategy achieves the
best results while the gupdate strategy achieves the worst. However, the differences
range around 2%, showing that all strategies work well. Surprisingly, as the com-
paratively bad results from the gupdate strategy show, it is not worth it to consider
negative side effects between prefix intervals. As the results from the greedy and
gupdate strategy differ, the BWTs must contain overlapping prefix intervals. How-
ever, the bad results of the gupdate strategy imply that negative and positive side
effects cancel each other out.

Regarding resource requirements, the average encoding speed of bcm is decreased
by 35% for the hirsch strategy, by 47% for the greedy strategy and by 48% for the
gupdate strategy. In the case of the bw94 compressor, the average encoding speed is

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

bcm-t-gupdate

bw94-t-gupdate

bcm-t-greedy

bw94-t-greedy

bcm-t-hirsch

bw94-t-hirsch

26.77

21.47

28.51

22.57

27.48

22

Relative encoding size decrease achieved by tunneling (pizzachili & repetitive corpus)

Figure 4.14: Boxplot of the relative encoding size decrease achieved by tunneling. The box-
plot uses the results of files from the pizzachili and repetitive text corpus, see
Chapter A. A similar image was already published in [BD19] © 2019 IEEE.

124 A P P L I C AT I O N I N D ATA C O M P R E S S I O N

decreased by 45% for the hirsch strategy, and by 53% for both the greedy and the
gupdate strategy. The decoding speed remains identical for almost all files. In the
case of files with good compression rates, the compression speed was improved by
a small amount, see Section B.1.

A critical resource required for compression is memory. In this case, a normal BWT
compressor requires about 5 times the input size for suffix array construction using
divsufsort [Mor03]. The hirsch strategy increases this amount by 30% on average,
the greedy strategy by 42% and the gupdate strategy by 76%. The reason is that
the hirsch strategy needs the additional CMT-array, greedy requires the bigger SPI

array and gupdate requires an additional overlapping graph. For decompression,
again, the memory peak remains identical or decreases when good compression was
achieved. Full data about memory peaks and speeds can be found in Section B.1.
Taking the resource requirements into account, our BWT compressor of choice is the
bcm compressor with the hirsch tunneling strategy.

Table 4.1 shows a comparison of the BWT-cased compressors with xz and zpaq
for selected files. A table containing all compression information can be found
on Page 207. In general, zpaq works best for small files from the canterbury and
largecanterbury corpus. Results for medium-sized files from the silesia corpus are
mixed, but bcm-t-greedy, xz and zpaq dominate the other compressors. In the case
of large files from the pizzachili corpus, both bcm-t-greedy and zpaq offer the best
compression. Very repetitive files should be compressed with xz or zpaq, but bcm-

Text corpus File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

canterbury alice29.txt 2.354 2.354 2.354 2.354 2.130 2.129 2.129 2.129 2.552 2.032

sum 2.779 2.657 2.651 2.654 2.557 2.389 2.377 2.384 1.987 2.186

largecanterbury bible.txt 1.663 1.660 1.659 1.659 1.440 1.435 1.433 1.434 1.750 1.391

silesia nci 0.339 0.327 0.327 0.327 0.292 0.276 0.274 0.275 0.345 0.362

x-ray 4.244 4.244 4.244 4.244 3.452 3.452 3.452 3.452 4.239 3.560

pizzachili proteins 2.289 1.972 1.965 1.977 2.331 1.912 1.901 1.920 2.222 2.609

english 1.711 1.470 1.469 1.471 1.478 1.184 1.183 1.186 1.985 1.683

repetitive cere 0.237 0.120 0.118 0.121 0.238 0.118 0.115 0.119 0.087 1.771

world-leaders 0.121 0.100 0.098 0.100 0.126 0.097 0.094 0.097 0.088 0.093

genomes hg38 1.754 1.723 1.723 1.723 1.645 1.608 1.607 1.608 1.716 1.826

Table 4.1: Compression results in bits per symbol for selected files. The best compression
result of each file is printed in bold. A full list of compression results for all files
can be found in Table B.2.

4.4 E X P E R I M E N TA L R E S U LT S 125

t-greedy offers a good and robust compression which is always close to the best
compression result. Finally, for whole reference genomes, bcm-t-greedy offers the
best compression.

In our opinion, xz is the best compressor for the typical application in a download
server. In the case of a download server application, decompression must be fast and
resource-saving because client systems have limited computational resources. The
compression using xz is resource-intensive and slow, but the decompression speed
is very high, see Table B.4. The memory peak of xz during decompression is the best
among all tested decompressors, underlining the strength of xz. Furthermore, xz
offers competitive compression rates which accelerate the transmission time when
the bandwidth is limited.

The zpaq compressor offers very good compression for some, but not all files.
The strength of zpaq lies in the context-mixing technique, which allows one to
adapt the compressor to a specific data source. As a consequence, other versions of
context-mixing compressors still dominate the ongoing hutter prize compression
competition nowadays [HMB06]. The problem of zpaq is that it is a rather slow
compressor.

BWT-based compressors always had the problem that their decompression speed
was too slow to be competitive. Moreover, the memory peak during decompression is
very high when the underlying string is long. We did not increase the decompression
speed by much, so BWT-based compressors still remain a niche product. However,
our goal was to improve the compressibility of a BWT, which in our opinion can
be seen as accomplished. This shows that it is worth it to further invest research on
faster decompression methods.

In contrast to xz and zpaq, BWT-based compressors do not only transport a string.
Instead, they transport a BWT, which is a significant additional value when the
underlying data should be analyzed. In Section 2.1.1 we have seen that a BWT
encoded in a wavelet tree is suitable to do efficient pattern search. Moreover, a
BWT allows approximative pattern search and a lot more indexing operations.
BWT compression thus should be seen as index transport rather than as pure data
transport. We have seen that tunneling achieves good compression results when the
indexes are big and the underlying data is repetitive, which is the typical case of
applications of indexing. Therefore, this chapter can be seen as a “transport protocol”
of BWT-based indices. In the next chapter we will see that tunneling is more than a
pure “transport protocol” of indices: it is a full compression scheme of such indices.

5
A P P L I C A T I O N I N S E Q U E N C E A N A LY S I S

In the last chapter we have seen that tunneling works well in the area of data
compression. What this chapter proposes is to show how tunneling can be applied
to the area of sequence analysis. One of the most popular problems in sequence
analysis is the exact string matching problem: given a string S of length n and a
pattern P of length m, one wants to find all occurrences of the pattern P in the
sequence S, see also Page 10.

Many efficient solutions for problems in sequence analysis require additional data
structures to work fast. Examples of such data structures are given by rank- and select
support, wavelet trees or balanced parentheses, see Section 2.3. As the sequences
to be analyzed can get very large1, these data structures have to be designed very
carefully to ensure that they fit in memory and offer acceptable performance. This
has lead to the research trend called “succinct data structures”: the target is to design
data structures whose size is close to the information-theoretic lower bound of the
underlying problem while still offering high performance.

This means that the worst-case run-time of an operation is sub-linear. For example,
if one wants to answer rankS(c, i) queries, one could scan the underlying string
S from position 1 to i and accumulate the number of c’s. This solution requires
no additional space at all, but has a worst-case run-time of O(n), which is clearly
not sub-linear. A further idea could be to precompute each rankS(c, i)-value and
store it in a two-dimensional table. This results in an O(1) worst-case run-time, but
requires σ · n · log(n) bits of space, which is much too big for practical applications.
A balanced wavelet tree instead requires about n · log(σ) bits of space and has a
worst-case run-time of O(log σ), which can be seen as a better time-space tradeoff.
In general, a common phenomenon is that the run-time is increased when less space
is used: more space means that more information can be precomputed.

Moving over to tunneling, tunneling decreases the size of a BWT but requires
two additional bit-vectors and a more complex backward step for the special tunnel
handling. Despite that the asymptotic worst-case run-time of a backward step does
not change, the expectation is that the real-world run-times increase because of

1 A human genome has roughly about 3 billion base pairs.

127

128 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

the more complex characteristics of a backward step in a tunneled BWT. Therefore,
tunneling shifts a given time-space tradeoff in the direction of less space (depending
on the input) and more run-time.

In this chapter, we will present an approach to compute a special sort of non-
overlapping prefix intervals. Alanko et al. have shown that such a non-overlapping
prefix interval collection can be used to build a tunneled FM-index [Ala+19]. In-
stead, we will present a succinct representation of tries, the so-called extended BWT
[Fer+05]. We will use the prefix interval collection to tunnel these tries. This results
in a trie representation with an unprecedented level of succinctness.

5.1 D E B R U I J N G R A P H E D G E R E D U C T I O N A N D T U N N E L I N G

As previously mentioned, tunneling only non-overlapping prefix intervals is benefi-
cial for sequence analysis. The main reason is that navigational operations tend to
be easier because there is no need for a stack saving the different tunnel entry points.
Non-overlapping prefix intervals can be used to obtain a tunneled FM-index with a
special text sampling scheme [Ala+19] but also to obtain a tunneled trie preserving
useful combinatorial properties. This will be introduced in Section 5.4.

In Section 3.4 we have seen that tunnel planning is hard in the case of overlapping
prefix intervals but did not give an affirmative answer to the open problem of
non-overlapping tunnel planning, as stated by Alanko et al.

How to find the optimal blocks that minimize space? [Ala+19]

We will not directly solve the problem here but give another approach which is
quite similar and preserves combinatorial properties which will be very useful in
Section 5.4. First of all, we want to repeat the connection between de Bruijn graphs
on sequences (Definition 2.17) and the BWT.

Let S be a string of length n, and let k ∈ [1, n] be some integer. Every k-mer x ∈ K
from the k-cyclic string Zk(S) then corresponds to a unique x-interval in the sorted
rotations of S. Let y ∈ K be any preceding node of x, i.e. y[2..k] = x[1..k− 1]. Then,
the y-interval can be entered by performing a backward search using the x-interval
and the character c = y[1]. Figure 5.1 shows the connection between de Bruijn graphs
and a BWT matrix.

Moreover, there exists a deep connection between a special sort of paths in a de
Bruijn graph and prefix intervals in a BWT matrix, which is presented next.

5.1 D E B R U I J N G R A P H E D G E R E D U C T I O N A N D T U N N E L I N G 129

$A

AG

GT

TG

GG

G$

i SA[i] L[i] S[SA[i]..n]S[1..SA[i]− 1]
1 9 G $AGTGGTGG
2 1 $ AGTGGTGG$
3 8 G G$AGTGGTG
4 7 T GG$AGTGGT
5 4 T GGTGG$AGT
6 5 G GTGG$AGTG
7 2 A GTGGTGG$A
8 6 G TGG$AGTGG
9 3 G TGGTGG$AG

Figure 5.1: Connection between the de Bruijn graph of order k = 2 (left) and the BWT
matrix (right) of the string S = AGTGGTGG$. The colored k-mer nodes on the left
correspond to k-mer-intervals in the sorted rotations on the right. A non-forking
path in G2(S) is given by (GT, TG, GG). The corresponding 2-mer prefix interval in
the BWT matrix is given by 〈3, [8, 9]〉. Parts of this image were already published
in [Bai+20] © 2020 IEEE.

Definition 5.1 (Non-forking path). Let S be a string of length n with de Bruijn graph
Gk(S) = (K, E) for some k ∈ [1, n]. Let p = (x1, x2, . . . , xl) be a sequence of nodes.
We say that p is a non-forking path in Gk(S) if and only if for all i ∈ [1, l − 1]

• xi+1 is the only successor of xi in Gk(S).

• xi is the only predecessor of xi+1 in Gk(S).

• xi has an outdegree greater than one.

We call p length-maximal if it is no proper subpath of any other non-forking path.

Definition 5.2 (k-mer prefix interval). Let S be a string of length n with BWT L, let
k ∈ [1, n] be an integer. A prefix interval 〈w, [i, j]〉 is a k-mer prefix interval if and
only if each column [LFx[i], LFx[j]] (0 ≤ x < w) of the prefix interval corresponds to
a k-mer interval in the BWT matrix of S.

Examples of non-forking paths and k-mer prefix intervals can be found in Fig-
ure 5.1. In Figure 5.1, it can be seen that a one to one correspondence between the
non-forking path and the k-mer prefix interval exists. The following theorem demon-
strates this correspondence and in a similar form was presented by the author of
this thesis in [Bai+20].

Theorem 5.3. Let S be a string of length n with de Bruijn graph Gk(S) = (K, E) for some
k ∈ [1, n], and let L be the BWT of S.

130 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

(i) There is a one to one correspondence between non-forking paths in Gk(S) and k-mer
prefix intervals in L.

(ii) k-mer prefix intervals corresponding to length-maximal non-forking paths are non-
overlapping.

Proof.

(i) Let p be a non-forking path in Gk(S), and let x and y be two adjacent nodes in p
with x-interval [ix, jx] and y-interval [iy, jy] in the BWT matrix. W.l.o.g. let x be
the only predecessor of y and let y be the only successor of x. Because x is the
only predecessor of y, L[iy] = · · · = L[jy] and [LF[iy], LF[jy]] ⊆ [ix, jx] must hold.
Additionally, as y is the only successor of x, [LF[iy], LF[ix]] = [ix, iy] must hold.
Therefore, the nodes of x correspond to k-mer intervals in the BWT matrix with
equal height and interval-wise equal BWT entries, where the LF-mapping of
any entry in a k-mer interval leads to the k-mer interval of the preceding k-mer.
This suffices to show that 〈l, [ixl , jxl]〉 is a k-mer prefix interval.

Now, let 〈w, [i, j]〉 be a k-mer prefix interval in the BWT matrix. Because each
column of 〈w, [i, j]〉 corresponds to a k-mer interval in the BWT matrix, we
can map each column [LFl[i], LFl[j]] (0 ≤ l < w) to some node xl in Gk(S).
The sequence (xw−1, . . . , x0) now is a non-forking path in Gk(S): For any two
adjacent nodes x and y in the sequence, [LF[iy], LF[jy]] = [ix, jx] holds true by
the definition of a prefix interval, so x is the only predecessor of y and y is the
only successor of x.

(ii) A node cannot be contained in two different length-maximal non-forking paths:
this would imply that the paths are not length-maximal. Therefore, the k-mer
intervals corresponding to both the nodes of the paths and the columns of the
associated prefix intervals must be disjoint, so the associated prefix intervals
are non-overlapping.

Theorem 5.3 shows that non-forking length-maximal paths correspond to non-
overlapping prefix intervals. We will extend this connection by defining edge-
reduced de Bruijn graphs similar to [Bai+20]. These graphs are strongly related
to tunneled BWTs.

5.1 D E B R U I J N G R A P H E D G E R E D U C T I O N A N D T U N N E L I N G 131

$A AG GT TG GG G$

$A AG GT TG GG G$

Figure 5.2: Normal and edge-reduced de Bruijn graphs with order k = 2 of the string
S = AGTGGTGG$. Fused edges are indicated by red arrows. Parts of this image
were already published in [Bai+20] © 2020 IEEE.

Definition 5.4 (Edge-reduced de Bruijn graph). Let S be a string of length n, let
k ∈ [1, n] be an integer and let Gk(S) = (K, E) be the de Bruijn graph of S. Denote by

F := { (x, y)m ∈ E | (x, y) is a non-forking path }

the set of fusible edges. The edge-reduced de Bruijn graph G̃k(S) = (K, Ẽ) of Gk(S)
is a graph where the multiplicity of all fusible edges is reduced to one, that is,

Ẽ := (E \ F)] { (x, y)1 | (x, y)m ∈ F }.

Definition 5.4 describes a special compression scheme of non-forking paths in de
Bruijn graphs: the number of edges is reduced. Another more common compression
scheme merges the nodes of a non-forking path instead. This reduces the number of
nodes, see e.g. [MLS14; BBO16] for more information.

When thinking about edge reductions, one notes that each multi-edge of a non-
forking path is fused to just one edge. Similarly, when tunneling a prefix interval,
the BWT entries between columns of a prefix interval are reduced to just one entry.
The following theorem, presented in [Bai+20], states this connection more precisely.
It shows that the reduction of edges in a de Bruijn graph analogously reduces the
size of a BWT by tunneling the associated k-mer prefix intervals.

Theorem 5.5. Let S be a string of length n, let k ∈ [1, n] be an integer and let Gk(S) =
(K, E) be the de Bruijn graph of S. Let G̃k(S) = (K, Ẽ) be the edge-reduced de Bruijn graph
of Gk(S), and let L̃, Dout, Din be a tunneled BWT obtained by tunneling all k-mer prefix
intervals associated to length-maximal non-forking paths in Gk(S). Then, the number of
edges in G̃k(S) is equivalent to the size of the tunneled BWT, that is, |Ẽ| = |L̃|.

Proof. Let p = (x1, . . . , xl) be a length-maximal non-forking path in Gk(S), and let
〈l, [i, j]〉 be its corresponding k-mer prefix interval according to Theorem 5.3. As each

132 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

edge in p from a node x to its successor y corresponds to a text position where the
k-mers overlap, there must be j− i + 1 edges between x and y. Thus, edge-reducing
p removes exactly (l − 1) · (j − i + 1) edges from Gk(S). Analogously, tunneling
〈l, [i, j]〉 shortens the BWT L by exactly (l − 1) · (j− i + 1) characters. Gk(S) initially
consists of n edges and L initially consists of n entries. As the set F of fusible edges
from Definition 5.4 corresponds to all edges that are contained in length-maximal
non-forking paths, the amount of remaining edges resp. entries after edge reduction
resp. tunneling is equal.

An example for the analogy between edge reductions and tunneling can be seen
in Figure 5.3. The next goal will be to show how a tunneled BWT associated with an
edge-reduced graph can be computed. First of all, given some k ∈ [1, n], we need a
way to efficiently store and access the k-mer intervals in the BWT matrix. We use
a bit-vector B of size n + 1 for this purpose: each left boundary of a k-mer interval
will be marked with a 1. Furthermore, we set B[n + 1] to 1. This implicitly gives us
information about the end of an interval, as the start of the lexicographically next
interval indicates the end of the current interval.

DBG

$A

AG

G$

GG

GT

TG

L Rotations

G $AGTG · · ·

$ AGTGG · · ·

G G$AGT · · ·

T GG$AG · · ·

T GGTGG · · ·

G GTGG$ · · ·

A GTGGT · · ·

G TGG$A · · ·

G TGGTG · · ·

DBG

$A

AG

G$

GG

GT

TG

L̃ Dout Din Rotations

G 1 1 $AGTG · · ·

$ 1 1 AGTGG · · ·

G 1 1 G$AGT · · ·

T 1 1 GG$AG · · ·

0 GGTGG · · ·

G 1 1 GT · · ·

A 0

G 1 1 TG · · ·

1 1

Figure 5.3: Analogy between an edge-reduced de Bruijn graph G̃2(S) and a tunneled BWT
obtained by tunneling all 2-mer prefix intervals associated to length-maximal
non-forking paths for the string S = AGTGGTGG$. The left-hand side shows that
each edge in the de Bruijn graph G2(S) corresponds to an LF-mapping in the
BWT, the right-hand side shows that this correspondence remains when edge-
reducing the graph resp. tunneling length-maximal 2-mer prefix intervals. A
similar image was already published in [Bai+20] © 2020 IEEE.

5.1 D E B R U I J N G R A P H E D G E R E D U C T I O N A N D T U N N E L I N G 133

Data: BWT L in form of an FM-index for a string S of length n, C-array CL, integer k ∈ [1, n].
Result: A bit-vector B of size n + 1 such that B[i] = 1 iff i is the left boundary of a k-mer interval or i = n + 1.

1 initialize a bit-vector B of size n + 1 filled with zeros
2 initialize an empty queue Q
3 push element [1, n] on Q

// compute k-mer intervals
4 for l ← 1 to k do
5 for q← |Q| − 1 to 0 do
6 [i, j]← first element of Q
7 pop first element of Q
8 M← getIntervalsL(i, j)
9 foreach 〈c, [lb, rb]〉 ∈ M do

10 push [lb, rb] on the back of Q

// mark left boundaries of the k-mer intervals
11 foreach [i, j] ∈ Q do
12 B[i]← 1

13 B[n + 1]← 1

14 return B

Algorithm 5.1: Computation of the k-mer interval boundaries bit-vector. The k-mer
enumeration is adapted from an algorithm in [Ohl13, p. 324].

For the computation of the k-mer intervals, we make use of the getIntervals-
function of wavelet trees. This allows us to enumerate all required k-mer intervals,
and afterwards set the corresponding bits. Algorithm 5.1 shows a way to compute
the k-mer interval boundaries.

The first part of Algorithm 5.1 computes k-mer intervals in increasing order: after
each iteration of the outer loop, Q contains all l-mer intervals where l is the loop
variable. This is ensured by the handling and removal of the frontmost interval
in Q (line 6) and the enqueuing of new intervals at the back of Q (line 10). In
the worst-case, each iteration of the outer for-loop (lines 4–10) creates min{σl, n}
new l-mer intervals. Therefore, the worst-case time complexity of Algorithm 5.1 is
O(∑k

l=1 min{σl, n} · log(σ)) = O(k · n · log(σ)). This can only be accepted for small
values of k. In the next section, we will see a different approach which has a better
worst-case time complexity. For now, we want to focus on the computation of a
tunneled BWT.

Given the k-mer interval boundaries in a bit-vector B, in the full version of [Bai+20],
it has been shown how the bit-vectors Din and Dout which are necessary for tunneling
can be computed. We start by setting both Din and Dout to copies of B. Then, for each
k-mer interval [i, j] we detect if [i, j] and [LF[i], LF[i]] are columns of a k-mer prefix
interval (and thus also of a length-maximal k-mer prefix interval). According to the
proof of Theorem 5.3, this can be done by checking two conditions: first, one checks if
L[i] = · · · = L[j] holds. This implies that the de Bruijn graph node of the [i, j]-interval

134 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: BWT L in form of an FM-index for some string S of length n, markings 10∗1 of potential prefix interval starts
in Din and potential prefix interval ends in Dout.

Result: Markings of valid prefix intervals in Dout and Din.

// process possible prefix interval starts
1 i← 1
2 for j← 1 to n do
3 if Din[j + 1] = 1 then
4 M← getIntervalsL(i, j)
5 〈c, [lb, rb]〉 ← first element of M

// check if interval contains multiple characters (|M| > 1)
// and if it can be associated to a prefix interval end (Dout[LF[i]..LF[j] + 1] = 10j−i1).

6 if |M| > 1 or Dout[lb..rb + 1] 6= 10j−i1 then
7 Din[i..j]← 1j−i+1

8 foreach 〈c′, [lb′, rb′]〉 ∈ M do
9 Dout[lb′..rb′]← 1rb′−lb′+1

10 i← j + 1

Algorithm 5.2: Unmarking of invalid prefix intervals. The algorithm treats each 10∗1
sequence in Din as a potential start of a prefix interval. Potential ends of prefix intervals
are indicated by a 10∗1 sequence in Dout. If the start of a potential prefix interval contains
multiple different characters in L or cannot be associated to an end of a prefix interval, the
prefix interval markings in Din and Dout are unmarked. The algorithm produces a k-mer
prefix interval marking if the parameters Din and Dout are set to the k-mer boundary
bit-vector B. The results of this algorithm can be used to obtain a tunneled BWT using
Algorithm 3.3. A similar algorithm was already published in the full version of [Bai+20]
© 2020 IEEE.

has only one predecessor. Second, one checks if B[LF[i]..LF[j] + 1] = 10j−i1 holds.
This, together with the first condition, ensures that [LF[i], LF[j]] is a k-mer interval of
a de Bruijn graph node with only one successor.

If both conditions are true, we know that [i, j] and [LF[i], LF[j]] are k-mer intervals
that belong to two adjacent nodes, where one node is the only predecessor and the
other node is the only successor of each other. The nodes then belong to a non-forking
path, and thus the intervals are columns of a length-maximal k-mer prefix interval.
To obtain the bit-vectors Din and Dout, analogously to the optimized tunneling of a
set of prefix intervals in Algorithm 3.2, we would have to set Din[i..j] = 10j−i and
Din[LF[i]..LF[j]] = 10j−i. As Dout and Din are copies of bit-vector B, this is already the
case: both intervals are k-mer intervals, so we don’t have to do anything. Instead, if
the conditions are not met, we have to set Din[i..j] = 1j−i+1 and Dout[LF[i]] = · · · =
Dout[LF[j]] = 1 because the entries i, i + 1, . . . , j and LF[i], . . . , LF[j] do not belong to
a k-mer prefix interval.

Executing the above procedure for all k-mer intervals in the BWT matrix then
produces two bit-vectors Din and Dout which are similar to the bit-vectors produced

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 135

B F L

1 $AGTGGTGG

1 AGTGGTGG$

1 G$AGTGGTG

1 GG$AGTGGT

0 GGTGG$AGT

1 GTGG$AGTG

0 GTGGTGG$A

1 TGG$AGTGG

0 TGGTGG$AG

1

Dout Din

1 1

1 1

1 1

1 1

1 0

1 1

0 1

1 1

0 0

1 1

L̃ Dout Din

G 1 1

$ 1 1

G 1 1

T 1 1

0

G 1 1

A 0

G 1 1

1 1

Figure 5.4: Tunneling of all length-maximal k-mer prefix intervals using the node boundary
bit-vector B. The left-hand side shows the bit-vector B and all LF-mappings
that do not belong to a length-maximal prefix interval. The middle part shows
the results of Algorithm 5.2 after execution with parameters Dout = B and
Din = B. The algorithm sets entries to 1 that do not belong to a length-maximal
k-mer prefix interval. The right-hand side shows the final tunneled BWT after
applying Algorithm 3.3 to the result in the middle. Parts of this image were
already published in [Bai+20] © 2020 IEEE.

by Algorithm 3.2. By applying Algorithm 3.3 on the result, the demanded tunneled
BWT can be obtained.

The operating principle of Algorithm 5.2 is shown in Figure 5.4. The k-mer in-
tervals are detected using the markings in the bit-vector Din. It is important to use
Din for the k-mer interval detection: if one would use Dout to do so, side effects
with line 9 could occur, so Dout may not represents the node boundaries properly.
Additionally, to speed up the algorithm, required LF-mapping entries are computed
together in line 9. The worst-case run-time of Algorithm 5.2 is O(n log(σ)), so given
the k-mer node boundaries, a tunneled BWT can be obtained using O(n log(σ))
time.

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N

In the last section, we have seen that edge-reduced de Bruijn graphs and tunneled
BWTs related to length-maximal k-mer prefix intervals are deeply connected. Thus,

136 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

to produce a small tunneled BWT one needs to minimize edges in a de Bruijn graph.
The size of an edge-reduced de Bruijn graph is fixed, so for a single order k, we
cannot minimize anything. However, the amount of edges may vary depending on
the order of the de Bruijn graph, see Figure 5.5. Thus we want to know the best order
k∗ such that the edge-reduced de Bruijn graph G̃k∗(S) of a string S has the minimal
amount of edges.

Problem 5.6 (De Bruijn graph edge minimization). Given a string S with length n,
find the smallest order k∗ ∈ [1, n] s.t. the edge-reduced de Bruijn graph G̃k∗(S) =
(K∗, E∗) contains the minimal amount of edges:

k∗ = argmin
k∈[1,n]

{ ∑
(x,y)m∈E

m | G̃k(S) = (K, E) is the order k edge-reduced DBG of S }

Problem 5.6 has first been stated in [Bai+20]. A naive solution of the problem
works as follows: Given a BWT L in form of a wavelet tree, we can enumerate all k-
mer intervals with increasing order k (similar to Algorithm 5.1) and thereby measure
the amount of edges for each order. The measurement of edges can be done by an
idea similar to the one in Algorithm 5.2: for each k-mer interval, we mark the left
boundary in a bit-vector B. Afterwards, we enumerate the k-mer intervals and check
if a k-mer interval [i, j] has only one preceding character in L, as well as checking

A

$

G

T

$A AG GT TG GG G$

$AG AGT GTG TGG GG$ G$A

GGT

$AGT AGTG GTGG TGGT GGTG

TGG$ GG$A G$AG

Figure 5.5: Edge-reduced de Bruijn graphs with order k = 1 (left), k = 2 (top right), k = 3
(middle right) and k = 4 (bottom right) of the string S = AGTGGTGG$. Fused edges
are indicated with red arrows, the de Bruijn graph with order k = 2 contains the
least edges, namely 9− 2 = 7 edges. A similar image was already published in
[Bai+20] © 2020 IEEE.

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 137

Data: BWT L in form of an FM-index for a string S of length n.
Result: Order k∗ such that the edge-reduced de Bruijn graph G̃k∗ (S) has the minimal amount of edges.

1 initialize a bit-vector B of size n + 1 filled with zeros
2 initialize an empty queue Q
3 push element [1, n] on Q

4 B[1]← 1 B[n + 1]← 1

5 k∗ ← 1 m∗ ← n

6 for k← 0 to n do
7 m← n
8 for q← |Q| − 1 to 0 do
9 [i, j]← first element of Q

10 pop first element of Q
11 M← getIntervalsL(i, j)

// check for fusible edges
12 if 〈c, lb, rb〉 is the only element in M and B[lb] = 1 and B[rb + 1] = 1 then
13 m← m− (rb− lb)

// store new nodes
14 foreach 〈c, [lb, rb]〉 ∈ M do
15 push [lb, rb] on the back of Q

// check if next order has too many nodes
16 if |Q| − q ≥ m∗ then
17 return k∗

// check for new minimum
18 if m < m∗ then
19 k∗ ← k
20 m∗ ← m

// mark node boundaries
21 foreach [lb, rb] ∈ Q do
22 B[rb + 1]← 1

23 return k∗

Algorithm 5.3: Naive de Bruijn graph edge minimization algorithm. A similar algorithm
was already published in the full version of [Bai+20] © 2020 IEEE.

if the bits B[LF[i]] and B[LF[j] + 1] are set. As a k-mer interval gets partitioned into
(possibly multiple) other intervals when the order is increased, it is not necessary
to clear the set bits. However, we have to set additional bits when an interval is
partitioned into multiple new intervals.

Algorithm 5.3 gathers these ideas. The enumeration of k-mer intervals is done in
lines 8–11 and 14–15. At the beginning of each iteration of the outer for loop, the
number of edges of the graph G̃k(S) is set to n. Then, during the enumeration of
the intervals, the lines 12–13 reduce this number when fusible edges in the graph
are detected. The “best order” graph is updated in lines 18–20 (m∗ is the number of
nodes of the “best order” graph). Finally, the marking of node boundaries for the
next order is performed in the lines 21–22.

The algorithm contains an optimization speeding up the worst-case run-time:
In the lines 16–17, it is checked if the queue Q contains more than m∗ new k-mer

138 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

intervals that were created during the current iteration. In this case, the algorithm
terminates immediately, which can be explained as follows: if Q contains more than
m∗ new k-mer intervals, the graph of the current order k contains more than m∗

distinct multi-edges (x, y)m. Even when all distinct multi-edges can be fused, this
means that the edge-reduced graph G̃k(S) contains at least m∗ edges, so no new
minimum is built in the lines 18–20. Additionally, the graph G̃k+1(S) contains at
least m∗ nodes. As the number of nodes increases for increasing k, this means that
all of the graphs G̃k+1(S), . . . , G̃n(S) contain at least m∗ nodes. As each node must
have at least one outgoing edge, all of those graphs must have at least m∗ edges, so
we don’t need to inspect them anymore.

The run-time of Algorithm 5.3 can be determined by counting the overall number
of k-mer intervals that are pushed to the queue Q in line 15. The run-time per element
consists of generation (line 11, 14 and 15), marking of the left boundary (line 21–22)
and processing (line 9 and 10). While the run-time for both the later mentioned stages
is constant, the generation requires O(log σ) time, so a single element in Q takes
O(log σ) time using a balanced wavelet tree. Lines 16–17 ensure that Q contains
at most m∗ k-mer intervals in a fixed order k. In the worst case, for each order k,
the edge-reduced de Bruijn graph has the same amount of edges and nodes (for
example the string S = An), so Algorithm 5.3 requires at most O(n ·m∗ · log(σ)) time.
The worst-case run-time of Algorithm 5.3 can only be accepted if m∗ is a very small
number, i.e. m∗ = O(log n). This is very unlikely, as it would mean that the “best
order” graph would consist of only O(log n) nodes.

To improve the run-time of the algorithm, one could assume that the dependence
between the order of a graph and its number of edges is a convex function. In this
case, one could test for each order k if the number of edges has decreased and stop
when the number increases. This seems to make sense: for small values of k, only
few nodes exist and so few forking paths exist. Then, after processing the best order,
the number of edges could increase because the graph contains more nodes with
less edges between each other, so fusing a path does not reduce the overall edge
count that much. In many cases this is true. Unfortunately, as Figure 5.6 shows there
are cases in which the dependency contains multiple local minima, e.g. for the files
nci or influenza.

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 139

10 20 30 40 50 60 70 80 90 100

alice29.txt

bible.txt

nci

sources

dna

einstein.en.txt

influenza

hg38

Order k

least
edges

most
edges

Figure 5.6: Dependence between the order k and the number of edges in an edge-reduced
de Bruijn graph for selected files from the test data set (see Chapter C). The best
order for most files is typically in the range of [5, 41] and varies the bigger and
more repetitive the files get. A similar image was already published in the full
version of [Bai+20] © 2020 IEEE.

5.2.1 Incremental algorithm

Another idea which was presented in [Bai+20] is to define an incremental algorithm
which updates the edge count every time the order is increased. We herein will
present this algorithm, but beforehand need some knowledge about “node evolu-
tion”. Node evolution describes the way in which nodes of a de Bruijn graph change
when increasing its order.

For any node in a de Bruijn graph, there exist three different kinds of “evolution
steps”. The first one is its birth, that is, the node is initially created. An example of
such a birth is given by the node T in the de Bruijn graph of order 1 in Figure 5.5.
The second kind of evolution step is aging, which means that the label of a node is
growing during order increase, but the node itself never disappears. In Figure 5.5,
the node T ages to TG (k = 2) and then to TGG (k = 3). The final evolution step of a
node is its decease, which means that the node is segmented into new born nodes.
In Figure 5.5, the node TGG deceases after the order k = 3 as it is split into the nodes
TGGT and TGG$. The full evolutionary process of the running example can be seen in
Figure 5.7.

T TG TGG
TGG$

TGGT

birth aging aging decease

order k
0 1 2 3 4

Figure 5.7: Node evolution steps of the node T from Figure 5.5.

140 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Besides the trivial observation that the decease of a node means the birth of new
nodes, one can see that a node deceases if and only if it has multiple successors
in the current order. Let x be a node with only one successor y. If the order of the
graph is increased, the label of x is extended by the last character of y because of
the overlapping of x and y by k− 1 characters. If a node x has multiple successors
y1, . . . , yd, it inherits the characters y1[k], . . . , yd[k]. As those characters must be
distinct, new nodes xy1[k], . . . , xyd[k] are set up in the next higher order, which
indicates the decease of node x. See Figure 5.8 for an example.

Before we discuss the connections between edges and node evolution, we show a
central result: all successors of a deceasing node must have been born immediately
before the current order.

Remark 5.7. Let k be an order of a de Bruijn graph, and let x be a node with multiple
successors y1, . . . , yd. Then, the nodes y1, . . . , yd must have been born between order
k and k− 1.

Proof. Because the nodes y1, . . . , yd are successors of x, they all must share the prefix
x[2..k]. Therefore, at order k− 1 there must have been a node with label x[2..k] which
deceased between order k − 1 and k. The decease of this node then induces the
birth of the nodes y1, . . . , yd, so y1, . . . , yd must have been born between order k and
k− 1.

The first consequence of Remark 5.7 is that newly born nodes of an order k
induce all the newly born nodes of order k + 1. Algorithmically, we can use this as
follows: say we have a queue Q in which all new nodes of order k are maintained.
Additionally, we need a bit-vector B of size n which contains the markings of node
boundaries from order k, similar to Algorithm 5.3. New nodes of order k + 1 can
then be obtained by inspecting all cω-intervals [lb, rb] of all nodes [i, j] ∈ Q: If either
B[lb] or B[rb + 1] is set to zero, the [lb, rb]-interval corresponds to a new node, so
we can put it to the back of queue Q for the next iteration, similar to lines 9–11 and
14–15 of Algorithm 5.3. Moreover, to obtain the node boundaries of order k + 1 in
the bit-vector B, we can enumerate all new nodes and mark their right boundary,
see lines 21–22 of Algorithm 5.3.

The second consequence of Remark 5.7 deals with inherited edge fusions. Let y be
a node in the de Bruijn graph of order k which aged between order k− 1 and k. Then,
its order-k predecessors x1, . . . , xd remain unchanged (i.e. they are also aging) during
the whole of its remaining lifetime. This must hold true because otherwise, new

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 141

G$ $A AG

G$A $AG AGT

G$AG $AGT AGTG

GT TG GG

GTG TGG

GG$

GGT

GTGG

TGG$

TGGT

GG$A

GGTG

Figure 5.8: Node evolution during increase of the de Bruijn graph order. The left-hand side
shows an extract of the graphs with order k = 2, 3 and 4 from Figure 5.5: as long
as a node has only a single successor, increasing the order only causes the node
labels to grow. The right-hand side shows an other extract of the graphs with
order k = 2, 3 and 4 from Figure 5.5: once a node has multiple successors, it is
split into new nodes in the next higher order.

nodes would be created with the existence of an aging successor, which contradicts
Remark 5.7. Therefore, neither the predecessors of node x nor the successors of the
nodes x1, . . . , xd change, implying that fused edges as well as normal multi-edges are
inherited in such cases. This allows us to update the edge count of an edge-reduced
de Bruijn graph while increasing the order by inspecting only a couple of nodes,
namely new nodes and deceasing nodes.

For a new node, two cases for edge fusions are possible. In the first case, the new
node y has only one predecessor x, and this predecessor x has only the successor
y. As this is the definition of a fusible path, we decrease the edge count by the the
size of the interval minus one, see also lines 12–13 of Algorithm 5.3. In the second
case, a new node y has only one predecessor x, but this predecessor has multiple
successors and thus deceases after the current order. If y ages after the current order,
according to the above discussion, we know that a new child of x would be the
only predecessor of y and y would be the only successor of the new child of x. We
therefore treat y as aging, although we don’t know if it will be aging, and possibly
revert the edge fusion later. Also, we store the amount of fused edges in a separate
variable, which after the current order is used to reduce the edge count of the next
order. To detect fused edges we mark each target of a fused edge in a bit-vector F.

The handling of deceased nodes uses the bit-vector F to increase the edge count
again. According to Remark 5.7, we know that a deceasing node is fully replaced by

142 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: BWT L in form of an FM-index for a string S of length n.
Result: Order k∗ such that the edge-reduced de Bruijn graph G̃k∗ (S) has the minimal amount of edges.

1 initialize a bit-vector B of size n + 1 filled with zeros
2 initialize a bit-vector F of size n filled with zeros
3 initialize an empty queue Q
4 push element [1, n] on Q

5 B[1]← 1 B[n + 1]← 1

6 k∗ ← 1 m∗ ← n
7 nG̃ ← 1 m← n

8 for k← 0 to n do
// possibly fusible edges in next higher order

9 f usible← 0
10 for q← |Q| − 1 to 0 do
11 [i, j]← first element of Q
12 pop first element of Q
13 M← getIntervalsL(i, j)

// check for fusible edges
14 if 〈c, lb, rb〉 is the only element in M then
15 if B[lb] = 1 and B[rb + 1] = 1 then
16 m← m− (rb− lb)

17 else
18 f usible← f usible + (rb− lb)

19 F[rb]← 1

// store new nodes
20 foreach 〈c, [lb, rb]〉 ∈ M do
21 if B[lb] = 0 or B[rb + 1] = 0 then
22 push [lb, rb] on the back of Q

// check if next order has too many nodes
23 if B[rb + 1] = 0 then
24 nG̃ ← nG̃ + 1
25 if nG̃ ≥ m∗ then
26 return k∗

// check for new minimum
27 if m < m∗ then
28 k∗ ← k
29 m∗ ← m

// establish possible fusions of next order and revert old fusions
30 m← m− f usible
31 foreach [lb, rb] ∈ Q do
32 if F[rb] = 1 then

// find left bound of old k-mer interval
33 last← selectB(1, rankB(1, lb))
34 m← m + (rb− last)
35 F[rb] = 0

// mark node boundaries
36 foreach [lb, rb] ∈ Q do
37 B[rb + 1] = 1

38 return k∗

Algorithm 5.4: Incremental de Bruijn graph edge minimization algorithm. A similar
algorithm was already published in the full version of [Bai+20] © 2020 IEEE.

new nodes. Therefore we can use the new nodes in the queue Q to check markings in
the bit-vector F, determine the node boundaries of the deceasing node and increase

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 143

the edge count again. Within this step we can also revert falsely assumed fusions of
the next order, as the target node of such a falsely assumed fusion was marked in
the bit-vector F.

The incremental (but not yet efficient) procedure is shown in Algorithm 5.4. We
want to describe some more technical details now but also show why the algorithm
is not yet efficient. As the queue Q no longer contains all nodes of the current order,
a variable nG̃ now stores the number of nodes in the current graph. Moreover, as the
edge count is updated after every iteration, a variable m stores the current amount
of edges in the graph.

Line 9 uses a variable f usible to sum up possible fusions of the next higher order.
The lines 11–13 generate new nodes, similar to lines 9–11 of Algorithm 5.3. The
detection of fusible edges then works similar to the one in Algorithm 5.3, except
in the special case that edges can be fused in the next higher order (line 18). Each
fusion, or possible fusion, is marked in F by setting the right boundary of the edge
target node to 1 (line 19).

Lines 20–26 are used to determine the node count and newly born nodes in the
next higher order. As already indicated, if B[lb] = 0 or B[rb + 1] = 0 holds, a node of
the current order deceases and a new node is born (lines 21–22). Because a deceased
node is replaced by a couple of new nodes, the node count nG̃ is increased for all
except of the lexicographically greatest new node, as this new node can be seen as a
replacement of the old one (lines 23–24). The termination of the algorithm in line 26
in case of too many nodes is similar to that of Algorithm 5.3.

At line 27, it is checked if a new minimum of edges is discovered. Then, lines
30–35 are used to establish possible fusions of the next higher order to revert fusions
of deceasing nodes. Similar to the increase of the number of nodes in lines 23–26,
fused edges are removed only once per deceasing node using the lexicographically
largest new replacing node (line 32). For the determination of the left boundary of
the deceasing node using the bit-vector B (line 32), the edge count is increased and
the marking of fused edges in the bit-vector F are cleared. This also reverses falsely
fused paths as their target node was marked in line 19 of the algorithm. Finally, the
algorithm marks all right node boundaries of new nodes in lines 36–37 and thereby
updates the bit-vector B for the next higher order.

The main problem of Algorithm 5.4 is the determination of the left boundaries of
deceasing nodes (line 33). We cannot use fast rank- and select-queries from Section
2.3 because the bit-vector B changes in every iteration. Rebuilding such support

144 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

structures after each iteration would end up in a worst-case run-time of O(n2 log σ)

which would not be an improvement.
We will fix this issue soon but beforehand want to discuss the worst-case run-time

of the algorithm under the assumption that line 33 can be executed in constant
time. Apart from the O(n) bit-vector initializations in lines 1 and 2, the worst-case
run-time of Algorithm 5.4 depends on the number z of generated intervals using the
getIntervals-function in line 13 during the whole algorithm execution. The run-time
of the remaining inner loops then depends only on this number (lines 20–26, O(z)) or
to a subset of the generated intervals (lines 31–35 as well as lines 36–37, O(z)). From
the preliminaries (Algorithm 2.5) we know that one call of the getIntervals-function
takes O(z′ log σ) time where z′ is the size of the output set, so the overall run-time
of the outer for loop in lines 8–37 is limited by O(z log σ).

To find an upper bound for the value of z, we divide the generated intervals
into three categories. The first category consists of newly born nodes which are not
the lexicographically largest replacing nodes, i.e. the conditions from line 21 and
23 are both true. Every time such a node is created, the node count number nG̃ is
incremented, but as the algorithm terminates as soon as nG̃ ≥ m∗ holds, the number
of such intervals is given by m∗.

The second category of intervals consists of newly born nodes which are also the
lexicographically largest replacing nodes. This means that the condition in line 21 is
true, while the condition in line 23 is false. Each such node is a direct replacement
of a deceasing node, so the number of such nodes is identical to the number of
deceased nodes throughout the execution of the algorithm. It is useful to think about
a “family tree” of nodes during execution: each node in the family tree corresponds
to the lifetime of a node during the algorithm execution. In such a family tree, each
inner node has at least two children because a deceased node is split into multiple
new nodes. Also, the family tree has exactly m∗ children as the algorithm terminates
as soon as m∗ nodes exist. The number of deceased nodes is thus identical to the
number of inner nodes in this tree, which can be bound by m∗ − 1. Therefore, the
second category of intervals is also bound by m∗.

The third category of intervals consists of intervals which do not correspond to
newly born nodes, i.e. the condition in line 21 is false. This means that an aging node
has a new node as a successor, but the successor does not cause the aging node to
decease. It is possible that an aging node has multiple new successors without being
deceased. To count the number of intervals from the third category, we introduce
a concept called “aging predecessorship”. Suppose a new node was born at the

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 145

A

$

G

T

$A AG GT TG GG G$

$AG AGT GTG TGG GG$ G$A

GGT

$AGT AGTG GTGG TGGT GGTG

TGG$ GG$A G$AG

Figure 5.9: Aging predecessorship (blue nodes) of the A-node during aging. After the first
aging, the predecessorship consists of the node itself. Then, every time the node
ages, the predecessorship is extended by the predecessors of the newest members.
A similar image was already published in [Bai+20] © 2020 IEEE.

order k− 1, and then aged to the order k. In this case, the aging predecessorship
of the node is given by the node itself. Then, if the node ages again during order k
and k + 1, all of its predecessors must age too, because otherwise, we would have
a contradiction to Remark 5.7. We thus add the predecessors of the node to its
aging predecessorship. If the node ages again, for the same reason as before, the
predecessors of the predecessors of the node must age, so we add the predecessors
of the predecessors of the node to its aging predecessorship in order k + 1, and so
on.

Figure 5.9 shows an example of such an aging predecessorship. We now want
to discuss some of its properties. First, when increasing the order, the aging pre-
decessorship of a node is increased by at least one node because of the inductive
application of Remark 5.7. Second, all of the nodes in the predecessorship have only
aging successors, as they would decease otherwise. This also implies that nodes in
the predecessorship must be non-related nodes in the family tree of nodes. Moreover,
at some fixed order k, the predecessorship of an older node is either disjoint or a
superset of a predecessorship of a younger node.

Using the aging predecessorship, we now distribute the number of cases of the
third category as follows: each time the case occurs for a node, we count the case
towards any of the newest members of the aging predecessorship of the node. As
the predecessorship of a node grows during order increase, and this case can happen

146 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

only once per order for a certain node, there can be no node in the predecessorship
to which this case applies twice. When an old node deceases, the predecessorship
of all of its former predecessors increases again, so if the case applies to some of
those predecessors, the same case distribution strategy ensures that no node in the
family tree receives a case twice. In summary, the intervals of the third category can
be distributed to nodes of the family tree such that no case applies to node twice.
This means that the intervals of the third category are bounded by 2m∗.

To summarize, the number of generated intervals of all three categories is given
by O(m∗). We shortly sum up the current result in the following corollary.

Corollary 5.8. Given a BWT L of a string S of length n in form of an FM-index, Algo-
rithm 5.4 solves the de Bruijn graph edge minimization problem. Assuming that line 33 of
Algorithm 5.4 can be implemented to run in O(1) time, the algorithm requires

• O(n) time for the initialization of the bit-vectors B and F.

• O(m∗ log σ) time for computing the best order k∗, where m∗ is the number of edges
in the edge-reduced de Bruijn graph G̃k∗(S).

5.2.2 Efficient incremental algorithm

As noted in Corollary 5.8, the main problem of our current incremental algorithm is
finding the left boundary of a deceasing node in order to revert old fusions properly.
A solution to this problem is to traverse the intervals in Q in lexicographical order,
i.e. by sorting the intervals in Q according to their left boundary. When we access
the interval of a deceasing node for the first time (B[rb + 1] = 0 and last =⊥ for the
enumerated [lb, rb] interval), we set a variable last to the left boundary lb, as this
corresponds to the left boundary of a deceasing node. Then, if we access the interval
for the last time (B[rb + 1] = 1), the interval of the deceasing node is determined. To
detect the left boundary of the next deceasing node, we set last to ⊥ again.

The enumeration of intervals from new nodes in lexicographical order can be per-
formed similar to a top-down traversal of intervals in an lcp-interval-tree presented
by Beller et al. [BBO12], see also [Ohl13, pp. 323–328]. The idea is to use σ queues
Qc instead of only one queue Q, where each queue Qc contains only intervals of
nodes whose first character is c. Let us assume that the intervals in each queue Qc

are lexicographically sorted. Trivially, this is true when only one interval is used
at the beginning of Algorithm 5.5 (line 5). The enumeration of all characters c ∈ Σ

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 147

in ascending order (lines 13 and 37) and for each c enumerating all intervals in the
queue Qc from front to back (lines 15–16 and 38) then simulates the enumeration of
all intervals in lexicographical order.

When generating new intervals for the next order, we have to ensure that the
new intervals do not conflict with intervals of the current order, and are also lexi-
cographically sorted. To avoid conflicts of new and old intervals in Algorithm 5.5,
we use the same trick as in Algorithm 5.4: we store the size of each queue Qc in a
variable qc (line 12) before enumerating only the first qc intervals in each queue Qc

(line 14). As new intervals are pushed to the back of a queue Qc (line 26), this ensures
a conflict-free interval handling. To ensure that the newly generated cω - intervals
are lexicographically sorted, we note that due to the enumeration of w-intervals
in lexicographic order, a newly generated interval cω is pushed to the back of Qc

before another cω̃-interval iff ω is lexicographically smaller than ω̃. This induces
that the newly generated intervals are lexicographically sorted inside of each queue
Qc, completing the induction.

The previously mentioned trick of storing the left boundary of a deceasing node
the first time it is entered (line 43), of not modifying the left boundary for all inter-
mediate accesses (line 42) and of obtaining the deceasing node boundaries when the
interval is accessed for the last time (lines 44–48) originally comes from Beller et al.
[BBO12]. Furthermore, Algorithm 5.5 combines the establishment of new fusions,
the removal of old fusions as well as the marking of node boundaries for the next
higher order in the loop of the lines 37–48. Using those modifications, the main loop
of Algorithm 5.5 requires O(m∗ log σ) time.

Next, the blue marked lines of Algorithm 5.5 will be discussed. Without the
blue lines, the algorithm solves the de Bruijn graph edge minimization problem
already. The problem itself only asks for the best order k∗, but for the purpose of
tunneling, we need a node boundary bit-vector B, see Algorithm 5.2. We could
use the order k∗ to generate such a bit-vector using Algorithm 5.1, but this takes
additional computational effort which can be avoided. Suppose we are in an order k
in Algorithm 5.5 in which a new minimum of edges is detected. Then, immediately
before line 31, the used bit-vector B corresponds to the required node boundary bit-
vector. However, as the algorithm proceeds, additional bits are set in the bit-vector.

Obviously, the best order k∗ is found when the algorithm detects a new minimal
amount of edges (line 31) for the last time during its execution. The related node
boundary bit-vector can be retained by storing all positions where a new bit in B is
set (line 41) and by clearing all such bits in the loop in lines 49–50 afterwards. As

148 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: BWT L in form of an FM-index for some string S of length n.
Result: Order k∗ and node boundary bit-vector B of the edge-reduced DBG G̃k∗ (S) with minimal amount of edges.

1 initialize a bit-vector B of size n + 1 filled with zeros
2 initialize a bit-vector F of size n filled with zeros
3 initialize an external buffer buf
4 initialize σ empty queues Qc
5 push element [1, n] on an arbitrary queue Qc
6 B[1]← 1 B[n + 1]← 1

7 k∗ ← 1 m∗ ← n
8 nG̃ ← 1 m← n
9 for k← 0 to n do

10 f usible← 0
11 foreach c ∈ Σ in ascending order do
12 qc ← |Qc|
13 foreach c ∈ Σ in ascending order do
14 for q← qc − 1 to 0 do
15 [i, j]← first element of Qc
16 pop first element of Qc
17 M← getIntervalsL(i, j)
18 if 〈c̃, lb, rb〉 is the only element in M then
19 if B[lb] = 1 and B[rb + 1] = 1 then
20 m← m− (rb− lb)

21 else
22 f usible← f usible + (rb− lb)

23 F[rb]← 1

24 foreach 〈c̃, [lb, rb]〉 ∈ M do
25 if B[lb] = 0 or B[rb + 1] = 0 then
26 push [lb, rb] on the back of Qc̃
27 if B[rb + 1] = 0 then
28 nG̃ ← nG̃ + 1
29 if nG̃ ≥ m∗ then
30 break outermost for-loop

31 if m < m∗ then
32 k∗ ← k
33 m∗ ← m
34 clear the external buffer buf

35 m← m− f usible
36 last←⊥
37 foreach c ∈ Σ in ascending order do
38 foreach [lb, rb] ∈ Qc from front to back do
39 if B[rb + 1] = 0 then
40 B[rb + 1]← 1

41 add rb + 1 to the external buffer buf
42 if last =⊥ then
43 last← lb

44 else
45 if F[rb] = 1 then
46 m← m + (rb− last)
47 F[rb]← 0

48 last←⊥

49 foreach lb ∈ buf do
50 B[lb]← 0

51 return 〈k∗, B〉

Algorithm 5.5: Efficient incremental de Bruijn graph edge minimization algorithm. A
similar algorithm was presented in [Bai+20], this version was adapted from [Web20].

5.2 D E B R U I J N G R A P H E D G E M I N I M I Z AT I O N 149

we do not know how often a new minimal amount of edges is found, we clear the
buffer after each new minimal amount (line 34) to ensure that only positions after
the last optimum are stored in the buffer. The maximal number of positions stored
in the buffer corresponds to the maximal number of new nodes in the graph, so the
buffer will contain at most 2 ·m∗ positions. This shows that the loop in line 49–50
requires O(m∗) time. Furthermore, clearing the buffer in line 34 can be done in O(1)
time by setting the output pointer of the buffer to the first position again. Thus, we
can retain the node boundary bit-vector B of the best order k∗ without increasing
the run-time of Algorithm 5.5.

Corollary 5.9. Given a string S of length n, the de Bruijn graph edge minimization problem
can be solved in O(n log σ) time using the following steps:

1. Computation of the BWT L of S in O(n) time.

2. Construction of the FM-index (wavelet tree of L) in O(n log σ) time.

3. Initialization of two bit-vectors B and F in O(n) time (line 1 and 2 of Algorithm 5.5).

4. Execution of lines 3–51 of Algorithm 5.5 in O(m∗ log σ), where m∗ is the number of
edges in the edge-reduced de Bruijn graph with the minimal amount of edges.

Using the FM-index and the resulting node boundary bit-vector B of Algorithm 5.5 as input
of Algorithm 5.2, we can construct a length-minimal tunneled BWT of S in terms of k-mer
prefix intervals in O(n log σ) time.

5.2.3 Experimental results

We implemented Algorithms 5.5 and 5.2 using C++ and the sdsl-lite library
[Gog07]. The combination of both algorithms enhanced with wavelet tree construc-
tion for the tunneled BWT can be seen as the construction of a tunneled FM-index.
The programs are publicly available [Bai20], information about the used test data
and the full benchmark results can be found in Appendix A and C.1.

We tested the algorithms on 44 files overall, categorized into 6 text corpora. The av-
erage result per corpus can be found in Figure 5.10. For small-sized files (canterbury
and largecanterbury, < 5 MB) the edge-reduction rate is too small to compensate the
additional overhead in the tunneled FM-index, that is, the two additional bit-vectors
Din and Dout. Files with medium and big size (silesia and pizzachili, 5 MB – 2 GB)

150 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

20% 40% 60% 80% 100% 120% 140% 160%
canterbury

largecanterbury

silesia
pizzachili
repetitive
genomes

Percentage of original DBG edges respectively original FM-index size

te
xt

co
rp

us

edge count in minimal DBG tunneled FM-index size

Figure 5.10: Average amount of reduced edges for minimal edge-reduced de Bruijn graphs
as well as size of corresponding tunneled FM index compared to a normal FM-
index. The values shown are averages over a whole text corpus; see Appendix
A and C.1 for more details. A similar image was already published in the full
version of [Bai+20] © 2020 IEEE.

achieve a good reduction rate, so the tunneled FM-index is favorable when being
compared to a normal FM-index in terms of size. The best results are achieved for
repetitive files, where the size of an FM-index could be reduced by 80 % on average
using tunneling. Full genome sequences with about 3 GB achieved the worst result:
because of the small alphabet size of 4, a character in an FM-index roughly requires
2 bits. Now, as the edge reduction rate in genomes is low and a tunneled FM-index
requires 2 additional bits per character, the size of a tunneled FM-index almost
doubles compared to a normal FM-index.

The construction of a tunneled FM-index requires about twice the amount of time
needed to construct the normal FM-index. The memory peak during construction is
dominated by the construction of the suffix array, see Appendix C.1.

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T

This section will present a succinct representation of extended tries. We already
introduced tries as tree-like dictionaries for multiple strings in the principles chapter,
see Section 2.4. Within the same section, a way to represent tries using Wheeler
graphs was also presented. This enables us to represent tries using the succinct
representation of Wheeler graphs. However, to perform exact multi-string matching
using the Aho-Corasick Algorithm [AC75], tries have to be extended by a few
components, which is given in the following definition.

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 151

Definition 5.10 (Extended trie). Let S = {S1, . . . , Sm} be a set of null-terminated
strings. The extended trie Tex(S1, .., Sm) = (V, E) is a directed rooted tree with the
following components:

• A label function λ : E→ Σ assigning a label to each edge.

• A node label function λ : V → Σ∗ assigning a unique label to each node.

• A failure link function φ : { v ∈ V | v is no leaf and not the root } → V
linking an inner node to its longest proper suffix node.

• A record function ρ : { v ∈ V | v is a leaf } → [1, m] assigning each leaf the
number of its corresponding record.

The components fulfill the following conditions:

• No two outgoing edges of a node u have the same label: let u, v, w ∈ V be
nodes with (u, v), (u, w) ∈ E. Then, λ((u, v) 6= (u, w)⇔ v 6= w.

• Let u1, u2, . . . , ui be the nodes visited on the unique path from the root node to
a node v ∈ V. Then, λ(v) := λ(u1, u2) · · · λ(ui−1, ui).

• φ(u) := argmaxv∈V{ |λ(v)| | λ(v) is a proper suffix of λ(u) }.

• A leaf v ∈ V with ρ(v) = i fulfills λ(v) = Si.

An example of an extended trie can be found in Figure 5.11. The basic tree shape,
label function λ and node label function λ are equivalent to normal tries as described
in the principles, see Definition 2.18. It should be noted that the node label function
λ is implicitly given by traversing the unique path from the root node to a desired
node v.

While the record function immediately seems to be useful because it maps a leaf
to the corresponding record, the purpose of failure links is apparent only at second
glance. Failure links were devised by Alfred V. Aho and Margaret J. Corasick [AC75]
and are an analogy to the jump table of the Knuth Morris Pratt string matching
algorithm [KMP77]. Suppose we have a string S = ACGTGGA and want to find all
occurrences of the strings from Figure 5.11. We start to match the three first characters
of S with the labels of nodes in the trie and end up in the leftmost node v at the
fourth level, i.e. λ(v) = ACG. When trying to match the next character we see that
S[4] = T and the outgoing edge with label A are not equal, so we are no longer able

152 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

A C

C G
G

G T T

A G G

$ G G

$ A

$

1

2

3

Figure 5.11: Extended trie Tex(S1, S2, S3) of the strings S1 = ACGA$, S2 = CGTGGA$ and
S3 = AGTGG$. The dashed blue lines indicate failure links, green boxes indicate
records of the corresponding leaves.

to extend the match. A naive approach would be to start at the second character of S
and the root of the trie again.

Instead, a more clever approach is to see that we can proceed with matching at
the fourth character of S against the node v with λ(v) = CG. As the string ACG has
already been matched, we do not need to match the characters CG again. Instead
of this, we start at the node CG, and try to proceed with the matching. Generally
speaking, for a given node u we want to have a link to a node v such that λ(v) is
the longest proper suffix of λ(u). In the case of a mismatch (or failure), we follow
the link and thereby prevent unnecessary matches. As the name already suggests,
failure links fulfill exactly this task.

Let S be a string of length n, and let P1, . . . , Pm be non-null-terminated patterns
such that no pattern is a substring of another pattern. Given an extended trie
Tex(P1$, . . . , Pm$), it is possible to solve the exact multi-string matching problem in
O(n) time, see Algorithm 5.6 and [Ohl13, pp. 27].

It is also possible to solve the exact multi-string pattern problem for arbitrary
patterns P1, . . . , Pm not fulfilling any other prerequisite. The basic idea is to replace
lines 4–5 of Algorithm 5.6 with a loop that iterates over all nodes on the unique path
of failure links from the current node to the root. On this path, each node that has
an outgoing edge labeled with $ corresponds to a match. The problem of such an
approach is that the path of failure links from a node to the root can contain up to

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 153

Data: Extended trie Tex(P1$, . . . , Pm$) such that no non-null-terminated pattern Pi is a substring of another pattern
Pj, string S of length n.

Result: All occurrences of the patterns P1, . . . , Pm in the string S.

1 i← 1
2 v← root of Tex(S1, . . . , Sm)
3 while i ≤ n do
4 if there exists an edge (v, v′) with λ((v, v′)) = $ then
5 report that pattern Pρ(v′) occurs in S ending at position i

6 if there exists an edge (v, v′) with λ((v, v′)) = S[i] then
7 v← v′
8 i← i + 1

9 else
10 if v = root of Tex(S1, . . . , Sm) then
11 i← i + 1

12 else
13 v← φ(v)

Algorithm 5.6: Aho-Corasick algorithm [AC75] for exact multi-string matching using
an extended trie Tex(P1$, . . . , Pm$). The algorithm works correctly if no pattern Pi is
a substring of another pattern Pj. This algorithm is a modification of an algorithm in
[Ohl13, p. 27].

n nodes. Thus, the worst-case run-time increases to O(n2). In [AC75] and [Ohl13,
pp. 27–31] two ways to accelerate this path traversal are presented. We will present
an alternative acceleration later but for now keep things simple and concentrate on
the restricted case.

The extended BWT (XBWT) is a succinct representation of extended tries. The
XBWT was invented by Ferragina et al. [Fer+05], but a succinct representation of
failure links was missing. Later on, Manzini added such a succinct representation
of failure links to the XBWT and also presented efficient algorithms for XBWT
construction [Man16]. We herein present a definition of an XBWT which additionally
takes the record function into account.

Definition 5.11 (Extended BWT). Let Tex(S1, . . . , Sm) = (V, E) be an extended trie
of the null-terminated strings S1, . . . , Sm with label function λ and record function ρ.
Furthermore, let π : [1, |V| −m]→ { v ∈ V | v is no leaf } be a mapping function
such that λ(π(1))R <lex · · · <lex λ(π(|V| −m))R.

The extended BWT of Tex(S1, . . . , Sm) consists of the following components:

• A bit-vector Dout saving the outdegrees of all inner nodes using reverse unary
coding, that is, Dout := 10degout(π(1))−110degout(π(2))−1 · · · 10degout(π(|V|−m))−11.

• A string LX storing the labels of outgoing edges of all inner nodes: for an inner
node u ∈ V with π(i) = u, the following holds true:

154 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

{ LX[k] | selectDout(1, i) ≤ k < selectDout(1, i + 1) } = { λ((u, v)) | (u, v) ∈
E }.

• An array CX of size σ (size of the alphabet of S1, . . . , Sm) supporting naviga-
tional operations: CX[c] := CLX [c]− (m− 1).

• A balanced parentheses sequence P of length 2 · (|V| −m) supporting failure
links. The sequence P fulfills the following condition: Let i and j be integers
such that λ(π(i))R is a proper prefix of λ(π(j))R, and define io := selectP(”(”, i)
as well as jo := selectP(”(”, j). Then, P satisfies io < jo < findcloseP(jo) <

findcloseP(io).

• A record array R mapping leaves to records. Let v be a leaf and define i :=
|{ u ∈ V | u is a leaf with λ(u)R <lex λ(v)R }|+ 1 as the lexicographic rank
of v under all leaves. Then, R[i] := ρ(v).

An example of the components of an XBWT can be found in Figure 5.12. First
of all, the XBWT numbers nodes by the lexicographic rank of their reversed labels.
Analogously to Section 2.4, as a BWT offers backward steps, the node labels are
reversed to simulate forward steps. In our case a forward step is meant to be an edge
navigation towards a child node.

The components LX and Dout describe the outgoing edges of all nodes, similar to
the components in the succinct representation of a Wheeler graph, see Definition 2.19.
The difference to Wheeler graphs is that we do not use an additional bit-vector Din

because we declare that each node in the trie has an indegree of one. This means that
the bit-vector Din would be completely filled with ones, so a rank- and select-query
is an identity operation: select1n(1, i) = i and rank1n(1, i) = i. Thus it is possible to
avoid the bit-vector, which saves space.

The declaration of a fixed indegree of one induces that the underlying Wheeler
graph is not cyclic. On Page 2.15 we have seen that a trie can be made cyclic by
moving the endpoints of edges labeled with $ to the root node. Instead, for the
XBWT, we will not follow any edge labeled with $, as those edges only lead to leaves.
We also have to adapt the C-array: virtually, only one edge points to the root node of
the trie. Thus, the occurrence count of the $ characters in LX must be set to one.

Failure links are represented using a sequence of balanced parentheses. As we
know that the labels of nodes in an XBWT are viewed in a reverse manner, a failure
link can be simulated by finding the longest proper prefix label instead of the
“normal” longest proper suffix label. In Section 2.3 it was shown that the operation of

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 155

A C

C G
G

G T T

A G G

$ G G

$ A

$
1

2
3

c

CX [c]

$

0

A

1

C

4

G

6

T

13

i iv i$ LX [i] Dout[i] λ(π[iv])R R[i$]
1 A 1

2 C 0

3 C 1

4 G 0

5 $ 1
6 $ 1

7 G 1

8 G 1

9 T 1

10 T 1

11 A 1

12 $ 1

13 A 1

14 G 1

15 G 1

16 G 1

17 G 1

18 1

1 ε

2 A

3 AGCA

4 AGGTGC
5 C

6 CA

7 GA

8 GC
9 GCA

10 GGTGA

11 GGTGC

12 GTGA

13 GTGC

14 TGA

15 TGC

1 1

2 2

3 3

P = ((() ()) (()) () (()) () () () () () ())

Figure 5.12: Extended trie Tex(S1, S2, S3) of the strings S1 = ACGA$, S2 = CGTGGA$ and
S3 = AGTGG$ (upper left corner) and components of an extended BWT. The red
node and edges in the extended trie correspond to the red entries in Dout, LX
and λ(·)R. The red parentheses in P also correspond to the red node.

finding the longest proper prefix of a string in a lexicographically sorted list can be
performed efficiently using a balanced parentheses sequence. Thus, the sequence P
is a direct analogue to the succinct representation of the prefix tree shown in Figure
2.12.

The last component of the XBWT is the record array. It is a simple mapping from
the $ characters in LX to the corresponding record numbers. Given that we detected
some node π[i] which contains an outgoing edge labeled $, the corresponding record
can be computed using the formula j← R[rankLX($, selectDout(1, i + 1)− 1)].

To see how each component is used, we rephrased Algorithm 5.6 such that the
Aho-Corasick algorithm works with the use of an XBWT. The result is shown in
Algorithm 5.7. If we encode the string LX with a balanced wavelet tree, add select
support to the bit-vector Dout as well as balanced parentheses support to the bit-
vector P, Algorithm 5.7 has a worst-case run-time of O(n log σ).

Regarding the space consumption of representations of extended tries, one can see
that the XBWT is a succinct representation. An extended trie Tex(S1, . . . , Sm) = (V, E)
for example can be represented by a special adjacency list. Each edge in the list then

156 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: XBWT of an extended trie Tex(P1$, . . . , Pm$) such that no non-null-terminated pattern Pi is a substring of
another pattern Pj, string S of length n. The XBWT consists of the components Dout, LX , P and R.

Result: All occurrences of the patterns P1, . . . , Pm in the string S.

1 i← 1
2 iv ← 1
3 while i ≤ n do
4 lb← selectDout (1, iv)
5 rb← selectDout (1, iv + 1)− 1

// check if node π[iv] has an outgoing edge labeled with $
6 rlb ← rankLX ($, lb− 1)
7 rrb ← rankLX ($, rb)
8 if rlb < rrb then
9 report that pattern R[rrb] occurs in S ending at position i

// check if node π[iv] has an outgoing edge labeled with S[i]
10 rlb ← rankLX (S[i], lb− 1)
11 rrb ← rankLX (S[i], rb)
12 if rlb < rrb then
13 iv ← CX [S[i]] + rrb
14 i← i + 1

15 else
// follow failure link if possible

16 if iv = 1 then
17 i← i + 1

18 else
19 iv ← rankP(”(”, encloseP(selectP(”(”, iv)))

Algorithm 5.7: Aho-Corasick algorithm using an XBWT.

consists of the label of the edge as well as a pointer to the destination node. If an edge
is labeled with $, we can replace the pointer with the corresponding record number.
Furthermore, failure links can be represented explicitly by using an additional array
of pointers. These data structures require |E| · (log σ + log |V|) bits for the adjacency
list and (|V| −m) log(|V| −m) bits for the failure links.

The XBWT instead requires |E| log σ + o(|E| log σ) bits for the balanced wavelet
tree, (|E|+ 1) + o(|E|+ 1) bits for the bit-vector Dout with select support and m log m
bits for the record array R. To summarize, we can replace the adjacency list with data
structures that require only |E| · (log σ+ 1)+ o(|E| · (log σ+ 1))+m log m+ 1+ o(1)
bits, which is clearly beneficial in terms of space. The explicit representation of failure
links can be replaced by a bit-vector with balanced parentheses support, requiring
only 2 · (|V| −m) + o(|V| −m) bits of space. Moreover, it has been shown in practice
that an XBWT among other string dictionary representations achieves the best
compression to date [MP+16].

Before proceeding with the construction of an XBWT, we will present a way to
remove the restriction from Algorithm 5.7 concerning the patterns. More precisely,
we want to present an algorithm that lists all occurrences of patterns P1, . . . , Pm in

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 157

a string S, even if a pattern is a proper substring of another pattern. These results
have not been published yet and strengthen the good reputation of the XBWT as an
extended trie representation.

Remark 5.12 (Unrestricted Aho-Corasick algorithm with an XBWT).
To report all occurrences of patterns P1, . . . , Pm in a string S, Algorithm 5.7 would
have to be extended as follows: at the start of each iteration of the outer while–loop,
one would have to inspect the unique failure link path leading from the current node
v to the root node. Then, each node on this path having an outgoing edge labeled
with $ corresponds to the occurrence of a pattern, see e.g. [Ohl13, p. 28].

In an XBWT, let iv be an integer such that π[iv] = v. The nodes π[jv] on the failure
link path to the root corresponding to occurrences of patterns fulfill the following
conditions:

1. λ(π[jv])R is a prefix of λ(π[iv])R. Because reversed node labels in an XBWT
are sorted lexicographically and the balanced parentheses sequence represents
the prefix trie of the node labels, this is equivalent to check if jv ≤ iv and
findcloseP(selectP(”(”, iv)) ≤ findcloseP(selectP(”(”, jv)) holds.

2. A node π[jv] contains an outgoing edge labeled with $, or equivalently, the
string LX[selectDout(1, jv)..selectDout(1, jv + 1)− 1] contains a $ symbol.

The number of candidate nodes cn fulfilling the “first half” of condition 1 (jv ≤ iv)
and condition 2 can be determined using cn = rankLX($, selectDout(1, iv + 1)− 1). To
filter out candidates fulfilling the “second half” of condition 1 we set up a conceptual
array PC of size m. The array contains the position of the closing parenthesis for
each node which has an outgoing edge labeled $, regarding the lexicographic order
of reverse node labels.

PC[k] := findcloseP(selectP(”(”, rankDout(1, selectLX($, k))))

Given the number cn from above and the position cp = findcloseP(selectP(”(”, iv))

of the closing parenthesis of node π[iv] in P, all entries k ∈ [1, cn] in PC satisfying
cp ≤ PC[k] correspond to nodes that fulfill both conditions. Moreover, as entries
in PC and the record array R are sorted according to the lexicographic order of the
reversed node labels, the record of the match then is given by R[k].

158 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: XBWT of an extended trie Tex(P1$, . . . , Pm$), range maximum data structure of the array PC, index iv of the
visited node in the Aho-Corasick algorithm, position i in the string S.

Result: All occurrences of the patterns P1, . . . , Pm in the string S ending at the current position i.

1 cn← rankLX ($, selectDout (1, iv + 1)− 1)
2 cp← findcloseP(selectP(”(”, iv))

3 let Q be an empty queue of pairs
4 push [1, cn] on Q
5 while Q is not empty do
6 let [lb, rb] be the first element of Q
7 remove first element of Q
8 if lb ≤ rb then
9 k← rmqPC(lb, rb)

10 if findcloseP(selectP(”(”, rankDout (1, selectLX ($, k)))) ≥ cp then // PC[k] ≥ cp
11 report that pattern R[k] occurs in S ending at position i
12 push [lb, k− 1] to queue Q
13 push [k + 1, rb] to queue Q

Algorithm 5.8: Reporting of all occurrences of patterns ending at position i during the
Aho-Corasick algorithm. The algorithm is a replacement of lines 6–9 of Algorithm 5.7
and reports all occurrences even if patterns are proper substrings of other patterns.

We thus need to determine all entries k ∈ [1, cn] satisfying PC[k] ≥ cp. This can
be done efficiently with the help of range maximum queries. An rmqPC(lb, rb)-query
computes the position of the largest value within the range PC[lb..rb], that is,

rmqPC(lb, rb) := argmax
k∈[lb,rb]

PC[k].

Such queries can be computed in O(1) time by using special range maximum
query data structures. The construction of these data structures requires linear time.
Furthermore, these data structures are stand-alone which means that the underlying
array is not needed to support the queries. Range maximum query data structures
can be represented using only 2m + o(m) bits of space where m is the size of the
underlying array, see e.g. [Ohl13, pp. 275–276] for more details.

Coming back to the primary problem of determining all entries k ∈ [1, cn] sat-
isfying PC[k] ≥ cp, we can use range maximum queries to solve the problem as
follows: we start with an rmqPC(1, cn)-query and store the result in a variable k. If
PC[k] < cp holds, we know that all values in PC[1..cn] must be smaller than cp, as
k was the index with the largest value. Otherwise, we report the occurrence and
repeat the procedure with the intervals [1, k− 1] and [k + 1, cn]. The recursion thus
allows one to filter exactly the desired entries. Each reported occurrence causes at
most 2 additional rmq-queries. Let occ be the number of occurrences of the patterns
in S. Then, using the described procedure, at most 3 · occ rmq-queries are executed
during the Aho-Corasick algorithm.

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 159

To save the space of the PC-array, we note that we can replace each access to the
array with its above definition using only the existing components of an XBWT,
reducing the additional space to 2m + o(m) bits for the range maximum query data
structure. Algorithm 5.8 gathers all of the described ideas and is a replacement of
lines 6–9 of Algorithm 5.7.

To summarize, we need an additional data structure using 2m + o(m) bits to
solve the exact multi-string matching problem with an XBWT. The Aho-Corasick
algorithm then requires O((n + occ) log σ) worst-case run-time where occ is the
number of occurrences of all patterns in the string S of length n.

5.3.1 XBWT Construction

So far we have seen that the XBWT is a compact representation of extended tries
which can be used in the Aho-Corasick algorithm. Of course, there are a plethora of
other applications of tries as string dictionaries, like for example Natural Language
processing, Web graphs or Bioinformatics, see [MP+16, pp. 74–75] for details and
more applications.

We now want to demonstrate how an XBWT can be constructed. Several ap-
proaches for XBWT construction varying in run-time and memory peak exist, see
e.g. [Fer+05], [Man16] or [OSB18]. We will present only the currently fastest one,
invented in our XBWT construction algorithm comparison paper [OSB18].

The basis of XBWT construction is formed by the BWT L of the string S with length
n obtained by concatenating all reversed strings S1, . . . , Sm and separating them with
the character $. More precisely, let S1, . . . , Sm be the null-terminated strings of which
the XBWT should be constructed. The string S then is defined as

S := S1[1..|S1| − 1]R$S2[1..|S2| − 1]R$ · · · Sm[1..|Sm| − 1]R$.

The key idea is that the set of BWT characters { L[k] | k ∈ [i, j] } in an ω$-interval
[i, j] of L corresponds to the set of labels of outgoing edges from a node v with reverse
node label λ(v)R = ω. For example, the set { L[k] | k ∈ [1, rankL($, n)] } directly
corresponds to the labels of outgoing edges of the root node in the trie, see also
Figure 5.13.

The first step in XBWT construction is to partition the sorted suffixes into ω$-
intervals. The partition is indicated with a bit-vector MR of size n + 1 where each set
bit at position i means that a new ω$-interval starts at position i. Additionally, we set

160 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

i iv LX [i] Dout[i] λ(π[iv])R

1 A 1

2 C 0

3 C 1

4 G 0

5 $ 1
6 $ 1

7 G 1

8 G 1

9 T 1

10 T 1

11 A 1

12 $ 1

13 A 1

14 G 1

15 G 1

16 G 1

17 G 1

18 1

19

1 ε

2 A

3 AGCA

4 AGGTGC
5 C

6 CA

7 GA

8 GC
9 GCA

10 GGTGA

11 GGTGC

12 GTGA

13 GTGC

14 TGA

15 TGC

L[i] MR[i] S[SA[i]..n]
A 1 $ · · ·
A 0 $ · · ·
C 0 $ · · ·
G 1 A$ · · ·
C 0 A$ · · ·
$ 1 AGCA$ · · ·
$ 1 AGTGGC$ · · ·
G 1 C$ · · ·
G 1 CA$ · · ·
T 1 GA$ · · ·
T 1 GC$ · · ·
A 1 GCA$ · · ·
$ 1 GGTGA$ · · ·
A 1 GGTGC$ · · ·
G 1 GTGA$ · · ·
G 1 GTGC$ · · ·
G 1 TGA$ · · ·
G 1 TGC$ · · ·

1

prefix tree cntc[i]
ε

A

A G C A

A G G T G C

C

C A

G A

G C

G C A

G G T G A

G G T G C

G T G A

G T G C

T G A

T G C

0
0
0
0
0
1
2
0
2
1
0
2
1
1
1
1
1
2

P = ((() ()) (()) () (()) () () () () () ())

Figure 5.13: Components of XBWT construction. The left-hand side shows selected compo-
nents of an XBWT of the strings S1 = ACGA$, S2 = CGTGGA$ and S3 = AGTGG$.
The middle shows the BWT of the string S = AGCA$AGGTGC$GGTGA$. The bit-
vector MR partitions the suffix array into ω$-intervals. The correspondence
between reversed node labels in the XBWT and ω$-intervals is indicated with
dotted lines. The right-hand side shows the prefix tree of the reversed node
labels as well as the counter array cntc indicating how many intervals end at
each position. The red marked entries in MR and cntc correspond to the red
marked parenthesis in the failure link sequence P.

a termination bit MR[n + 1] = 1. The bit-vector MR can be computed as follows: we
enumerate the $-interval, then all c$-intervals, then all c̃c$-intervals and so on, and
stop the left-extension of an interval if the left-extending character is a $. Meanwhile,
we set MR[i] = 1 for each enumerated interval and thus obtain the desired bit-vector,
see Algorithm 5.9. We note that due to the observation from above, this emulates a
traversal of all inner nodes of the trie.

For the computation of the balanced parentheses sequence P we need information
about the prefix tree of the reversed node labels, see Figure 5.13. A node in this prefix
tree corresponds to an ω-interval in the suffix array. The left boundary of such an
ω-interval corresponds to the left boundary of the ω$-interval, so the left boundaries
of the desired ω-intervals correspond to the positions of set bits in MR. Now let [i, j]
be an ω-interval. The right boundaries of all cω-intervals then can be computed

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 161

Data: Null-terminated strings S1, . . . , Sm, BWT L in form of an FM-index of the string
S = S1[1..|S1| − 1]R · · · Sm[1..|Sm| − 1]R$ of length n, C-array CL of string L.

Result: A bit-vector MR of size n + 1 storing the left boundaries of all ω$-intervals in S, a counter array cntc of size
n storing the right boundaries of all ω-intervals where the ω$-interval is not empty.

1 initialize a bit-vector MR of size n + 1 filled with zeros
2 MR[n + 1]← 1

3 initialize a counter array cntc of size n initialized with zeros
4 initialize an empty queue Q
5 push element 〈1, m, n〉 on Q

6 while Q is not empty do
7 〈i$, j$, j〉 ← first element of Q
8 pop first element of Q

// mark left boundary of ω$-interval and right boundary of ω-interval
9 MR[i$]← 1

10 cntc[j]← cntc[j] + 1

// enumerate cω$-intervals
11 M← getIntervalsL(i$, j$)
12 foreach 〈c, [lb$, rb$]〉 ∈ M do
13 if c 6= $ then
14 if j$ = j then // avoid unnecessary rank-queries
15 rb← rb$

16 else
17 rb← CL[c] + rankL(c, j)

18 push element 〈lb$, rb$, rb〉 to queue Q

19 return 〈MR, cntc〉

Algorithm 5.9: Construction of the bit-vector MR and the counter array cntc. The algo-
rithm is derived from a similar algorithm presented in [OSB18].

using rb← CL[c] + rankL(c, j). This means that we can integrate the enumeration of
all desired cω-interval boundaries into the enumeration of ω$-intervals by keeping
track of each right boundary. To store these boundaries, we use a counter array cntc of
size n and increment the counter each time we visit a right boundary, see Algorithm
5.9. As we will see later, the information in MR and cntc suffices to compute P.

The run-time of Algorithm 5.9 is determined by the number of triples which
reside in the queue Q during execution. Each new triple requires O(log σ) time for
generation (lines 11, 12 and 17) and corresponds to a node in the trie. The overall
run-time of Algorithm 5.9 is thus given by O(n log σ), because the trie cannot have
more than n nodes. This run-time also covers the initialization processes in lines 1–3.
Note that the integer width of each entry in the counter-array cntc must be log n bits.
In the worst case, the right boundaries of all intervals coincide. On Page 165 we will
present a way to reduce the size of cntc but for now concentrate on the remaining
XBWT construction.

To finish the “shape components” LX and Dout of the XBWT, we must remove
duplicate characters within each ω$-interval, as a node cannot have two outgoing
edges with the same label. An easy way to remove duplicates is to make use of the

162 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: Null-terminated strings S1, . . . , Sm, BWT L in form of an FM-index of the string
S = S1[1..|S1| − 1]R · · · Sm[1..|Sm| − 1]R$ of length n, bit-vector MR computed from Algorithm 5.9.

Result: XBWT components LX and Dout.

1 initialize a string LX of size rankMR(1, n) + m− 1
2 i← 1
3 k← 1
4 for j← 1 to n do
5 if MR[j + 1] = 1 then
6 M← getIntervalsL(i, j)
7 foreach 〈c, [lb, rb]〉 ∈ M do
8 LX [k]← c
9 MR[k]← 0

10 k← k + 1

11 MR[k− |M|]← 1

12 i← j + 1

13 MR[k]← 1

14 trim MR to size k
15 return 〈LX , MR〉

Algorithm 5.10: Construction of the XBWT components LX and Dout. The algorithm is
derived from a similar algorithm presented in [Man16].

getIntervals-function for each ω$-interval: the function enumerates the characters in
the interval only once per character. The bit-vector Dout can be computed by counting
the number of remaining characters in each interval. Algorithm 5.10 shows how
both operations can be combined. The bit-vector MR is overwritten with the final
bit-vector Dout. The worst-case run-time of Algorithm 5.10 is bound by O(n log σ).

The idea for the construction of the balanced parentheses sequence was presented
in [OSB18]. It originates from a similar construction of a balanced parentheses
sequence used to represent the topology of a suffix tree, devised by Belazzougui
[Bel14]:

[...] Our key observation is that we can easily build a balanced parenthesis
representation by enumerating the suffix array intervals. More precisely
for every position in [1..n], we associate two counters, one for open
and the other for close parentheses implemented through two arrays
of counters Co[1..n] and Cc[1..n]. Then given a suffix array interval [i, j]
we will simply increment the counters Co[i] and Cc[j]. Then we scan the
counters Cc and Co in parallel and for each i from 1 to n, write Co[i]
opening parentheses followed by Cc[i] closing parentheses. It is easy to
see that the constructed sequence is that of the balanced parentheses of
the suffix tree. [...]

The construction of a balanced parentheses sequence for prefix trees works in
a similar way. In our case, the left boundaries of all ω-intervals are stored in the

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 163

Data: Bit-vector MR and counter array cntc computed from Algorithm 5.9.
Result: XBWT failure link component P.

1 initialize a parentheses sequence P of size 2 · rankMR(1, n)
2 k← 1
3 for i← 1 to n do
4 for j← 1 to MR[i] do
5 P[k]← ”(”
6 k← k + 1

7 for j← 1 to cntc[i] do
8 P[k]← ”)”
9 k← k + 1

10 return P

Algorithm 5.11: Construction of the XBWT component P.

bit-vector MR, so we can treat MR similar to the Co array from above. The right
boundaries of all ω-intervals were counted in the cntc array, so we can analogously
treat cntc as Cc. The construction of P thus is rather simple and is shown in Algorithm
5.11. The worst-case run-time of the algorithm clearly is O(n).

As Algorithm 5.10 overwrites the MR-array, one should run Algorithm 5.11 before
executing Algorithm 5.10. The computation of the CX-array is straightforward by
Definition 5.11. The last component which has to be constructed is the record array
R which assigns the record number to each corresponding $ in LX.

An efficient construction algorithm of the record array has not been published
until now, so we will give one here. The first ingredient is a mapping from the $’s in
L to $’s in F. By the definition of the LF-mapping (see Page 13) we know that the k-th
occurrence of a $ in L corresponds to the k-th occurrence of a $ in F. However, as we
used multiple $’s in our string, the first $ in F must be handled differently. Unlike the
other entries, this entry does not inherit the string context because the corresponding
suffix consists only of the character $. Let dc be the rank of the corresponding $ in L,
that is, dc = rankL($, i) where i is the BWT index, i.e. SA[i] = 1. The mapping from
$’s in L to $’s in F is thus as follows: the dc-th $ in L corresponds to the first $ in F.
For the remaining entries, the k-th $ in L ignoring entry dc then corresponds to the
k + 1-th $ in F.

This special mapping can be easily computed given the entry dc. The entry dc

itself is easily computable because typical BWT construction algorithms compute the
BWT index i. Using an FM-index, dc can be computed using dc = rankL($, i). Next,
we want to map the $’s in F to the records using the first m entries of the suffix array.
In an XBWT, navigation to a child is performed by a backward step. This means that
each $ in F corresponds to the nearest left occurrence of a $ next to a record in S.

164 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: Number m of null-terminated strings S1, . . . , Sm, suffix array SA[1..m] of the string
S = S1[1..|S1| − 1]R · · · Sm[1..|Sm| − 1]R$, rank dc of the cyclic $ in L, i.e. dc = rankL($, i) where i is the index
satisfying SA[i] = 1.

Result: XBWT record array R.

// set up a list of records and their nearest left $ in S
1 let A be an array of pairs of size m
2 j← 2 // position of current non-cyclic $ in F.
3 for i← 1 to m do
4 if i = dc then // special handling for cyclic entry
5 A[i]← 〈0, i〉
6 else
7 A[i]← 〈SA[j], i〉
8 j← j + 1

// compute record array
9 sort A by the first key of the pairs

10 let R be an array of size m
11 for i← 1 to m do
12 〈sa, j〉 ← A[i]
13 R[j]← i

14 return R

Algorithm 5.12: Computation of the XBWT record array R.

The nearest left occurrence of a $ next to the first record in S is at position n
because the string is viewed cyclically. The nearest left occurrence of a $ next to the
second record then can be found at the first occurrence of $ in S. The nearest left $
next to the third record is at the second occurrence of a $ in S, and so on.

We now combine everything by setting up an array A containing pairs 〈SA[j], i〉
that map the $’s in L to their position in the text. To handle the special cyclic case for
the first record, we set A[dc]← 〈0, dc〉. Now, the array A is sorted by the first key of
the pairs. Afterwards, the entry A[j] contains the j− 1-th occurrence of a $ in S, or
analogously, A[j] refers to the j-th record. Additionally, the second key stores the
lexicographic rank of the suffix starting at the j− 1-th occurrence of a $ in S. We can
thus reversely plug the position and the second key into the array R and get our
desired result.

The full record array construction can be found in Algorithm 5.12. Using a stan-
dard sorting algorithm [Wil64], Algorithm 5.12 requires O(m log m) time. If we
assume that the suffix array SA of S is stored in an external memory, we can save
space by using an arrangement of the array A. The second key of the array A can
be represented using the array R, while the first key of the array can be represented
using an array of integers with width log n. After sorting, we copy the second key to
the first key of A, so the array R can be used again. Then, we only have to adapt line
8 such that the variable j contains the first key of A. This means that Algorithm 5.12
needs m log n bits of additional working space.

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 165

Corollary 5.13. Let S1, . . . , Sm be a set of null-terminated strings and let S be a string
of length n defined as S := S1[1..|S1| − 1]R$ · · · Sm[1..|Sm| − 1]R$. The XBWT of the
extended trie Tex(S1, . . . , Sm) can be constructed in O(n log σ + m log m) time with the
following steps:

1. Suffix array construction and FM-index construction of S in O(n log σ) time.

2. Construction of MR and cntc with Algorithm 5.9 in O(n log σ) time. Both components
require n and n log n bits of space.

3. Construction of the balanced parentheses sequence P with Algorithm 5.11 in O(n)
time using the arrays cntc and MR.

4. Construction of the shape components LX and Dout with Algorithm 5.10 in O(n log σ)

time using the FM-index and MR. The bit-vector MR can be overwritten with the Dout

component during execution, so no additional space for Dout is needed.

5. Construction of the CX array using LX in O(n) time.

6. Construction of the record array R using Algorithm 5.12 and SA[1..m] in O(m log m)

time and m log n bits of additional working space.

Looking at Corollary 5.13, we note that the counter array cntc requires a lot of
space. The counter array requires n log n bits of space for saving the information of
at most n right boundaries of intervals in the prefix tree. Additionally, the counter
array is used solely for the construction of P and is not overwritten during XBWT
construction. We thus present a way to save working space during construction by
using a succinct counter array as presented by Cunial et al. [CAB19].

Remark 5.14 (Succinct counter array). Suppose we get n integer positions i1, . . . , in

which are bounded by n (ik ∈ [1, n]) and want to count how often any position i ∈
[1, n] was hit. More formally, we want to know the value C(i) := |{ k ∈ [1, n] | ik =

i }| for each i ∈ [1, n]. A normal counting array requires n · log(n) bits because in
the worst case all integer positions are equal, so each position must be able to cover
the value n.

Instead, according to [CAB19], a succinct counter array can be designed as follows:
create an array c such that each entry uses only b bits, and count positions similar to
a conventional counting array. Once an entry is full, i.e. c[i] = 2b, create an entry in a
map M which contains i as a key and the count as value. If i is hit again, increment

166 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

the count in M. To read a count of a position i, if c[i] < 2b holds, use the value c[i],
otherwise access M to get the correct count.

Using the map M, it is still possible to cover the value n, but it is unlikely that
M will contain many entries. Also, frequent positions reside in the cache, making
accesses to M efficient. To find an appropriate value for b we regard the worst-case
space consumption. In the worst case, M can have n/2b entries. If m is the space
consumption of a single entry in H, the space consumption is

n · b︸︷︷︸
c array

+
n
2b ·m︸ ︷︷ ︸
map M

= n ·
(

b +
m
2b

)
bits.

Depending on the implementation of the map M, a typical value for m on 64-bit
platforms could be 4 · 64 = 256: In the case of a binary tree, two integers for position
and count as well as two pointers for the child nodes are required. In the case of
a hashmap, we can set the initial number of buckets to n/2b and for each entry
use two integers for position and count as well as two pointers for the doubly
linking between elements with the same hashed key. Defining f (b) := b + 256

2b , we

get the derivation f ′(b) = 1− loge(2)·256
2b . As f is a convex function, the minimum

of f corresponds to the root of f ′, which is approximately given at b ≈ 7.47. As
b must be an integer, taking into account that integer arrays with bit width 8 are
common on most platforms, we set b = 8. Plugging the values b = 8 and m = 256
into the worst-case space consumption shows that this form of succinct counter
array requires at most

n · 8 + n · 256
28 = 9 · n bits.

This is beneficial compared to a normal counting array when log2(n) > 9, or simi-
larly, when n > 512 holds, which is true for all of the herein used data sets.

5.3.2 Experimental results

We implemented the described XBWT construction algorithm which we called XBWT
fast. The implementation is publicly available [Bai20]. We compared the algorithm
against the most memory-saving construct algorithm from [OSB18], which we called
XBWT lightweight. XBWT fast and XBWT lightweight differ in the way the balanced
parentheses sequence P is computed. While XBWT fast computes the arrays MR and

5.3 T R I E R E P R E S E N TAT I O N U S I N G T H E E X T E N D E D B W T 167

P in only one traversal of all ω$-intervals, XBWT lightweight uses one traversal for
MR and another one for P. The two traversals allow for the reduction of the counter
array size, see [OSB18] for more details.

We used specially prepared input data from Chapter A as input. Empty lines and
lines with less than 10 characters were filtered out. Additionally, lines containing
other lines as proper substring were filtered out, to ensure correctness of the Aho-
Corasick algorithm. From such modified files we used only files with more than 1
MB of size and with more than 1000 lines to ensure a certain branching factor and
size of the resulting trie. The lines of such files then were used as input strings for
the trie. A full description of the generated test data can be found in Section C.2.
Average timings and memory peaks during construction can be found in Figure
5.14.

The figure shows that XBWT fast requires about twice the time of the FM-index
construction, while XBWT lightweight requires about four times the amount of
the time of the FM-index construction. This is owed to the second traversal over
all ω$-intervals, making the algorithm slower. Additionally it can be seen that
the lightweight algorithm saves space, but only a very small amount. The best
space-saving technique is the use of succinct counters, leaving the run-time of the
algorithms almost unchanged.

At first glance it seems unnecessary to save space during construction because the
memory peak is dominated by FM-index construction, but we note here that slower
but more space-saving algorithms for FM-index construction exist. The dominating
memory peak in FM-index construction comes from suffix array construction, for

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

avg. memory peak in bytes per character

av
g.

ti
m

e
in

se
co

nd
s

pe
r

M
B

of
in

pu
td

at
a

FM-index

XBWT fast

XBWT fast SC

XBWT lightweight

XBWT lightweight SC

Tunneled XBWT

Tunneled XBWT SC

Figure 5.14: Average space-time tradeoff of different trie construction algorithms. The further
down a mark in the graph is, the faster the algorithm runs. The more to the
left a mark in the graph is, the less memory is required. The trie construction
algorithms require the FM-index and the (externally saved) suffix array of the
underlying test data as input. The SC variants refer to algorithms using succinct
counters. The full benchmark results can be found in the Figures C.7 and C.8.

168 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

which slower but more memory-saving algorithms exist, see e.g. [Bel17a]. However,
we used fast suffix array construction [Mor03] because we were only interested in
the timings for pure XBWT construction.

Figure 5.14 clearly shows that the algorithm XBWT fast with the use of succinct
counters offers the best space-time tradeoff, and is therefore the method of choice
for XBWT construction. The figure also includes construction algorithms for the
construction of a tunneled XBWT. It can be seen that these algorithms require a bit
more memory and require about 80 % more time than the XBWT fast variants, but
are still faster than the XBWT lightweight variants. The time penalty mainly comes
from the additional execution of the de Bruijn graph edge minimization algorithm
which is required for tunneling.

We will introduce trie tunneling in the next section to see how beneficial tunneling
of an XBWT can be. More information about the size of an XBWT and the perfor-
mance of the Aho-Corasick algorithm using an XBWT can be found in the Sections
5.4.4 and C.2.

5.4 T R I E T U N N E L I N G

The last part of this chapter combines our previous results about tunnels related
to de Bruijn graph edge minimization (Section 5.1) and the succinct representation
of extended tries (Section 5.3). The results of this chapter have not been published
yet but were already presented in a student project supervised by the author of this
thesis [RHRH20].

We will answer four main questions in this section:

• Is it possible to produce a tunneled XBWT (or TXBWT in short), and how can
we traverse it?

• How can failure links be retained in a tunneled BWT?

• How can the components of a TXBWT be constructed efficiently?

• What are the gains and performance penalties of a TXBWT?

We will see that the special class of k-mer prefix intervals related to de Bruijn
graph edge minimization is essential to get both concepts together and answer the
questions from above appropriately.

5.4 T R I E T U N N E L I N G 169

1

2 5

6 7 8

9 14 15

3 12 13

10 11

4

A C

C G
G

G T T

A G G

G G

A

$

$
$

L Dout Din F
A 1

C 0

C 1

G 0

$ 1

$ 1

G 1

G 1

T 1

T 1

A 1

$ 1

A 1

G 1

G 1

G 1

G 1

1

1 $
0 $
0 $
1 A

1 A

1 A

1 C

1 C

1 G

1 G

1 G

1 G

1 G

1 G

1 G

1 T

1 T

1
c

CL[c]
$
0

A

3
C

6
G

8
T

15

LX Dout Din λ(·)R

A 1

C 0

C 1

G 0

$ 1

$ 1

G 1

G 1

T 1

T 1

A 1

$ 1

A 1

G 1

G 1

G 1

G 1

1

1 ε

1 A

1 AG · · ·
1 AG · · ·
1 C

1 CA

1 GA

1 GC

1 GC · · ·
1 GG · · ·
1 GG · · ·
1 GT · · ·
1 GT · · ·
1 TG · · ·
1 TG · · ·
1

c
CX [c]

$
0

A

1
C

4
G

6
T

13

Figure 5.15: Comparison of the shape components of an XBWT (right) and the succinct
representation (middle) of a Wheeler graph representation (left) of the under-
lying trie. The trie is set up from the strings S1 = ACGA$, S2 = CGTGGA$ and
S3 = AGTGG$. The blue and red dashed lines indicate boundaries in the repre-
sentations determined by the corresponding C-array. The Din bit-vector in the
XBWT is grayed out because it is normally omitted as it consists only of ones.

5.4.1 Tunneled XBWT introduction and trie traversal

We first will show that it is possible to tunnel XBWTs. In the principles about Wheeler
graphs in Section 2.4.2 we have seen that tries can be formulated as Wheeler graphs.
To do this, we removed leaves from the trie and moved the endpoints of incoming
edges to the root node, see Figure 5.15. The consequence is that the root node has an
indegree of m, where m is the number of strings contained in the trie.

In an XBWT we have the convention that it is not allowed to follow edges labeled
with the termination symbol $. This allows us to define the indegree of the root node
to one, so the succinct indegree bit-vector Dout consists of only ones and thus does
not need to be represented explicitly. To perform correct trie navigation, we defined
the cumulative character count array CX[c] as CLX [c]− (m− 1) which allows us to
ignore the $ characters in L, see also Figure 5.15.

Therefore, the XBWT can be seen as an optimized version of the succinct Wheeler
graph representation of tries. Because we are not interested in following edges

170 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

L̃X Dout Din λ(·)R

A 1

C 0

C 1

G 0

$ 1

$ 1

G 1

G 1

T 1

T 1

A 1

$ 1

A 0

G 1

G 1

1

1 ε

1 A

1 AGCA

1 AGGTGC

1 C

1 CA

1 GA

1 GC

1 GCA

1 GG · · ·

1 GT · · ·

1 TG · · ·
0

1

A C

C G
G

G
T T

A G

$ G
$ A

$

c

C̃X [c]

$

0

A

1

C

4

G

6

T

11

Figure 5.16: Tunneled XBWT shape components (left and bottom right) and an illustration
of the associated word graph (top right). The tunneled XBWT was obtained by
tunneling the (14, 12, 10), (15, 13, 11) prefix interval in the Wheeler graph from
Figure 5.15. The tunnel is marked in both the TXBWT and the associated word
graph using blue, red and green. A similar image appeared in [RHRH20].

labeled with the termination character, we removed them from the representation.
The remaining edges in an XBWT are isomorphic to the edges in the succinct Wheeler
graph representation of tries, so a tunneled Wheeler graph also automatically implies
a tunneled XBWT.

The effect of tunneling an XBWT can be seen in Figure 5.16. Tunneling converts
the tree structure of a trie to a directed word graph, but still allows one to traverse
the graph as if it is a tree. This is interesting in its own right, because the graph
corresponding to the tunneled XBWT might contain loops. However, we now want
to focus on navigation in a tunneled XBWT.

As a short reminder, tunneling fuses parallel equally labeled paths. The tunnel
start is indicated by an indegree greater than one, represented in the bit-vector Din.
Analogously, the tunnel end is indicated by an outdegree greater than one repre-
sented in the bit-vector Dout. Note that the XBWT also contains “normal” branching
nodes with outdegree greater than one. To distinguish between a normal branching
node and the end of a tunnel, we thus have to save whether we navigate in a tunnel
or not.

5.4 T R I E T U N N E L I N G 171

Data: Tunneled XBWT with components L̃X , C̃X , Dout and Din, node index iv, uppermost tunnel entry edge etop,
tunnel entry edge eent, character c.

Result: Node index jv, uppermost tunnel entry edge etop, tunnel entry edge eent in case that an edge from node iv to
node jv labeled with c exists.

1 function child(〈iv, etop, eent〉, c)

2 lb← selectDout (1, iv)
3 rb← selectDout (1, iv + 1)− 1

// check if the end of a tunnel is reached
4 if eent 6= ⊥ and Dout[rb] = 0 then
5 lb← lb + (eent − etop) // jump to correct lane
6 rb← lb
7 etop ← ⊥
8 eent ← ⊥

// check if node π[iv] has an outgoing edge labeled with c
9 rlb ← rankL̃X

(c, lb− 1)
10 rrb ← rankL̃X

(c, rb)
11 if rlb = rrb then // no edge with character c available
12 return ⊥

// navigate to child node

13 e← C̃X [c] + rrb
14 jv ← rankDin

(1, e)

// check if the start of a new tunnel is detected
15 if Din[e] = 0 then
16 etop ← selectDin

(1, jv)
17 eent ← e

18 else if Din[e + 1] = 0 then // start of a tunnel at uppermost entry
19 etop ← e
20 eent ← e

21 return 〈jv, etop, eent〉

Algorithm 5.13: Child navigation in a tunneled XBWT with non-overlapping tunnels. A
similar algorithm appeared in a student project [RHRH20].

Because tunneling fuses only parallel paths, there is no possibility for a branching
node to be reached in the middle of a tunnel.2 To indicate if a node with outdegree
greater than one is the end of a tunnel or a branching node, we use two variables
etop and eent. The first variable (if set) saves the position of the uppermost incoming
edge of a tunnel in Din while the second variable saves the position of the incoming
edge at which the tunnel was entered. When a node with outdegree greater than
one is reached, we can distinguish between a tunnel end and a branching node by
checking if variable eent is set.

The remaining navigation is equivalent to the navigation in a tunneled BWT
or an XBWT respectively, and can be found in Algorithm 5.13. Although it seems
unnecessary to use two variables storing information about the tunnel entry edge,

2 This also justifies why we defined prefix intervals as parallel paths and not as isomorphic subgraphs
in Section 3.2. In the latter case, it could be possible that tunnel starts and ends are misinterpreted as
normal branching nodes, leading to incorrect navigation.

172 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

we will see that this information is essential to support failure links in a TXBWT,
which is the topic of the next section. The same section will also show why the
tunneled prefix intervals in a trie should not overlap when failure links are to be
supported.

5.4.2 Failure link support

Failure links are an essential tool to support an efficient multi-pattern search, see
Algorithm 5.6. As a reminder, we repeat the definition of failure links as introduced
in Section 5.3. Given an inner node v of the trie with reversed node label λ(v)R, the
failure link φ(v) points to the unique node whose reversed node label is the longest
proper prefix of λ(v)R.

φ(u) := argmax
v∈V

{ |λ(v)| | λ(v)R is a proper prefix of λ(u)R }.

Tunneling fuses paths and thereby removes nodes from the graph. We face two
problems when combining tunneling and failure links:

1. How can we handle failure links which originally pointed to a node that was
removed by tunneling?

2. How can we emulate failure links starting at removed nodes?

We will see that both problems can be solved if tunnels are built only from the
restricted class of k-mer prefix intervals. Again, as a reminder, k-mer prefix intervals
have the property that the nodes of a column of the prefix interval share a common
prefix ω of length k in their labels. Moreover, no other nodes outside of the column
have ω as prefix of their labels. We refer to Definition 5.2 for more details.

Our first goal is to avoid failure links pointing to removed nodes. We therefore
formulate the following isolation lemma that enables us to set up distinct failure link
groups of nodes.

Lemma 5.15. Let T = (V, E) be an extended trie, and let ω 6= ε be a string. Define Vω as
the set of nodes whose reversed node label share the common prefix ω, i.e.

Vω := { v ∈ V | v is an inner node and ω is a prefix of λ(v)R }.

The set Vω then fulfills the following properties:

5.4 T R I E T U N N E L I N G 173

1. No failure link outside of Vω points into Vω.
More precisely, for all inner nodes v ∈ V \Vω except of the root, φ(v) 6∈ Vω holds.

2. All failure links in Vω pointing out of Vω point to the same node.
Let u, v ∈ Vω be nodes with φ(u) 6∈ Vω and φ(v) 6∈ Vω. Then, φ(u) = φ(v) holds.

Proof. By the definition of the set Vω, no inner node v ∈ V \Vω shares the prefix ω

in its reversed node label λ(v)R. Therefore, the failure link of such a node must point
to a node whose reversed node label does not share the prefix ω, or is a proper prefix
of ω. In both cases, the node φ(v) will not belong to the set Vω, proving Property 1.

Now suppose we have two nodes u, v ∈ Vω with φ(u) 6∈ Vω and φ(v) 6∈ Vω.
Because failure links point to the longest proper prefix nodes, and both failure
links point out of Vω, both reversed node labels λ(φ(u))R and λ(φ(v))R must be
proper prefixes of ω. As failure links point to the longest proper prefix nodes,
λ(φ(u))R = λ(φ(v))R and so φ(u) = φ(v) must hold. This proves Property 2.

As we have learned from Lemma 5.15, sets Vω of nodes sharing an equal prefix
ω in their reversed prefix label are ideal candidates for columns of prefix intervals.
First, no failure link from outside points into the set, so removing nodes inside the
set is no problem. Second, all failure links pointing out of the set are equal, so we
simply need to retain the failure link of the node with the lexicographically smallest
reversed node label and can use that for any other outgoing link. Finally, these
nodes all share the prefix ω in their reversed labels, so they are adjacent to each
other regarding the Wheeler graph order. An illustration of Lemma 5.15 and its
consequences for fused paths in a trie is shown in Figure 5.17.

Of course, this holds true only if the considered sets Vω are disjoint. In case that
two sets intersect, failure links might point from one set to the other, making node
removals difficult. This for example is the case when overlapping prefix intervals
are tunneled, and justifies why only non-overlapping prefix intervals should be
considered.

The easiest way to set up a list of candidates for columns of prefix intervals
consists of grouping nodes whose reverse node label share a common prefix of some
fixed length k. This ensures that the sets are disjoint. Nodes having a label with less
than k characters are ignored in this scenario. However, as a trie is a branching data
structure, the number of such nodes should be limited depending on the value of k.
To find a good value for k, we remind that the de Bruijn graph edge minimization
from Section 5.2 concerns a similar problem. We will see how both concepts can be

174 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

A C

C G
G

G T T

A G G

$ G G

$ A

$

A C

C G
G

G
T T

A G

$ G
$ A

$

Figure 5.17: Illustration of the isolation Lemma 5.15. The left side shows a normal trie with
the node sets VTG, VGT and VGG. No failure link points into the sets, and each
failure link pointing out of a set points to the identical target node. This enables
one to tunnel the underlying prefix interval and to keep only one failure link
(right) unless no failure links in a set point into the same set.

brought together in Section 5.4.3, but for now want to come back to failure links in a
tunneled XBWT.

What is still missing is the handling of failure links of removed nodes that point
to nodes within the same set Vω. Note that this is by no means unnecessary because
at the end of a tunnel the labels of outgoing edges might differ depending on the
visited path. We therefore formulate the following inheritance lemma.

Lemma 5.16. Let T = (V, E) be an extended trie, let ω 6= ε be a string and c be a character.
Furthermore, let Vω and Vcω be two set of nodes as defined in Lemma 5.15 such that all
outgoing edges from nodes in Vω point to nodes in Vcω:

Vcω = { v ∈ V | u ∈ Vω, (u, v) ∈ E }.

Let u ∈ Vω and v ∈ Vcω be two nodes with (u, v) ∈ E.

• If φ(u) ∈ Vω holds, then φ(v) ∈ Vcω and (φ(u), φ(v)) ∈ E is implied.

• If φ(u) 6∈ Vω holds, then φ(v) 6∈ Vcω is implied.

Proof. The label length of the failure link node φ(v) cannot be greater than the label
length of the failure link node φ(u) plus one. Otherwise, as (u, v) ∈ E implies
λ(v)R = cλ(u)R, the failure link of node u would not point to the node with the
longest reversed proper prefix label. So clearly, the string cλ(φ(u))R is the longest
possible reversed label of a failure link node φ(v) of v.

If φ(u) ∈ Vω holds, as all outgoing edges from nodes in Vω point to nodes in Vcω,
there exists a node having the reversed node label cλ(φ(u))R. This node clearly must

5.4 T R I E T U N N E L I N G 175

be the failure link node of v, belongs to the set Vcω and is also connected with φ(u)
because it is the left-extension of λ(φ(u))R with character c, so (φ(u), φ(v)) ∈ E
must hold.

If φ(u) 6∈ Vω holds, there is no node in Vω whose reversed label is a proper
prefix of λ(u)R. As all outgoing edges from Vω point to nodes in Vcω, a node whose
reversed label is a proper prefix of λ(v)R = cλ(u)R cannot exist within the set Vcω.
This holds true because all reversed labels of nodes in Vcω are left-extension of
reversed node labels from nodes in Vω and clearly implies φ(v) 6∈ Vcω.

Inheritance Lemma 5.16 tells us that failure links are inherited inside of k-mer pre-
fix intervals. More precisely, let p1 = (v1,1, v1,2, . . . , v1,w) and p2 = (v2,1, v2,2, . . . , v2,w)

be two paths of such a prefix interval. If the first failure link of p1 points into the same
node set, i.e. φ(v1,1) = v2,1, then the second failure link of p1 points to the second
node in the same path, i.e. φ(v2,1) = v2,2. Applying the lemma repeatedly then shows
that all failure links from p1 point into p2, i.e. φ(v1,i) = v2,i for all i ∈ [1, w]. For the
other case, if the failure link of node v1,1 points out of the k-mer prefix interval, then
the failure links of the nodes v1,2, . . . , v1,w point out of the k-mer prefix interval.

The combination of Lemma 5.15 and 5.16 enables us to retain all failure links in a
tunneled XBWT. For all nodes not belonging to a tunnel, the isolation lemma ensures
that no failure links to removed nodes exist. Additionally, for each fused node in a
tunnel, we keep the first failure link of the column. Note that this failure link must
point out of the column, because it belongs to the node with the lexicographically
smallest label. Because all failure links pointing out of a column point to the same
node, this suffices to leave a tunnel correctly. We will call those links explicit.

To handle failure links inside prefix intervals, we keep all failure links of the start
node of a tunnel and associate them to the incoming edges of the node. While the
first such failure link is explicit, we call the remaining failure links implicit because
they can point to nodes which are no longer present. We thus modify implicit failure
such that they point to edges instead of nodes, namely the incoming edges of the
original nodes.

The idea to emulate failure links inside of a tunnel now is as follows: when a
tunnel is entered, the index of the incoming edge eent and the index of the topmost
incoming edge of the node etop is saved. In the case that we want to follow a failure
link at some node in the tunnel, we distinguish between two cases. In the first case,
we entered a tunnel at the topmost edge, so we simply follow the explicit failure link
at this node. In the second case, we first follow the implicit failure link at edge eent

176 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

A C

C G
G

G
T T

A G

$ G

$ A

$

iout iin L̃X [iout] Dout[iout] Din[iin] λ(π[iin])R

A 11

C 02

C 13

G 04

$ 15

$ 16

G 17

G 18

T 19

T 110

A 111

$ 112

A 013

G 114

G 115

116

11

12

13

14

15

16

17

18

19

110

111

112

013

114

ε

A

AGCA

AGGTGC

C

CA

GA

GC

GCA

GG · · ·

GT · · ·

TGA

TGC

P̃ = ((() ()) (()) () (()) () () () ())

Figure 5.18: Example of explicit and implicit failure links in a tunneled XBWT. Red arcs or
entries in the trie or the components of the XBWT are explicit, because they
belong to a node which is present in the trie. Red-white arcs or entries are
implicit, because those components belong to nodes which were removed by
tunneling but need to be kept in the XBWT to emulate failure links correctly.

and obtain an edge ef . If the edge ef does point to the start node of the tunnel, we
jump inside of the tunnel by setting eent ← ef . This is correct behavior because of the
inheritance Lemma 5.16. If the edge ef does not point to the start node of the tunnel,
we follow the explicit failure link of the current node instead. This is correct because
of the inheritance Lemma 5.16 and the isolation Lemma 5.15.

Let us translate this behavior to the tunneled XBWT. The balanced parentheses
sequence P̃ now contains an opening and closing parenthesis for each position in
the bit-vector Din. In case that Din[e] = 1 holds, the failure link is explicit, otherwise
implicit. P̃ now is built from the prefix trie of both the explicit reversed node labels
and implicit reversed node labels. Implicit here means that the nodes are no longer
present because Din[e] = 0 holds. This has the consequence that the failure links
in P̃ point to indices of incoming edges instead of nodes. In the case of an explicit
failure link, the edge index ef can easily be converted to the node index i using
i← rankDin

(1, ef). Similarly, the uppermost entry edge of a node index i can be found
using e← selectDin

(1, i). This allows us to handle both explicit and implicit failure
links in the same manner, but we have to remember to convert edge identifiers to

5.4 T R I E T U N N E L I N G 177

Data: Tunneled XBWT with components L̃X , C̃X , Dout, Din and P̃, node index iv, uppermost tunnel entry edge etop,
tunnel entry edge eent.

Result: Node index jv, uppermost tunnel entry edge etop, tunnel entry edge eent of the (implicit or explicit) node
where the failure link in the original trie points to.

1 function failure-link(〈iv, etop, eent〉)
// check if we are in a tunnel at a non-uppermost path

2 if etop 6= eent then
3 ef ← rankP̃(”(”, encloseP̃(selectP̃(”(”, eent)))

// check if implicit failure link points to a node at the start of the tunnel
4 if ef ≥ etop then
5 return 〈iv, etop, ef 〉 // jump in the tunnel

// follow explicit failure link at current node
6 etop ← selectDin

(1, iv)
7 ef ← rankP̃(”(”, encloseP̃(selectP̃(”(”, etop)))

8 jv ← rankDin
(1, ef)

9 return 〈jv,⊥,⊥〉

Algorithm 5.14: Failure link navigation in a tunneled XBWT with tunnels from k-mer
prefix intervals. A similar algorithm appeared in a student project [RHRH20].

node identifiers in the case of explicit failure links. An example of implicit failure
links, implicit node labels and the resulting balanced parentheses sequence P̃ can be
found in Figure 5.18. Algorithm 5.14 shows how failure links in a tunneled XBWT
can be emulated.

We now want to repeat the mechanisms of failure links in a tunneled XBWT.
In addition to explicit failure links for the nodes that have not been removed by
tunneling, we also keep implicit failure links for the start nodes of all tunnels to
emulate failure links within a tunnel. The failure links are no longer associated to
nodes, but to incoming edges instead. This implies that the length of the balanced
parentheses sequence P̃ is reduced by tunneling. More precisely, the number of
failure links in a tunneled XBWT is equal to the length of the bit-vector Din, or put
differently, to the length of the tunneled XBWT. For the sake of thoroughness, a full
tunneled XBWT is depicted in Figure 5.19

It is essential to tunnel only non-overlapping prefix intervals. Otherwise, the
isolation Lemma 5.15 does not hold. Moreover, it is essential to tunnel only prefix
intervals where the column nodes set up a “prefix group”, i.e. the reversed node
labels share a common prefix ω and no node outside of the group shares this prefix.
This is essential for both the isolation Lemma 5.15 and the inheritance Lemma
5.16. The easiest way to fulfill both conditions is to tunnel k-mer prefix intervals. In
Section 5.2 we have seen a way to find the best value of k such that the corresponding
tunneled BWT has minimal length. Consequently, in the next section, we put all
modules together and show how a tunneled XBWT can be constructed.

178 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

A C

C G
G

G
T T

A G

$ G
$ A

$
1

2
3

c

C̃X [c]

$

0

A

1

C

4

G

6

T

11

iout iin i$ L̃X [iout] Dout[iout] Din[iin] λ(π[iin])R R[i$]
A 11

C 02

C 13

G 04

$ 15

$ 16

G 17

G 18

T 19

T 110

A 111

$ 112

A 013

G 114

G 115

116

11

12

13

14

15

16

17

18

19

110

111

112

013

114

ε

A

AGCA

AGGTGC

C

CA

GA

GC

GCA

GG · · ·

GT · · ·

TG · · ·

1 1

2 2

3 3

P̃ = ((() ()) (()) () (()) () () () ())

Figure 5.19: Full tunneled XBWT (right and bottom left) and its trie illustration (top left). A
similar image appeared in [RHRH20].

5.4.3 Construction

The construction of a tunneled XBWT is mainly equivalent to the construction of a
normal XBWT, except that nodes belonging to tunnels are removed. We will use the
intermediate construction components MR and cntc from Section 5.3.1 as well as the
k-mer prefix interval markings Dout and Din from Section 5.1 for this purpose.

First of all, recall that the bit-vector MR partitions the suffix array of the string
S = S1[1..|S1| − 1]R$S2[1..|S2| − 1]R$ · · · Sm[1..|Sm| − 1]R$ into intervals where each
interval corresponds to a node in the final XBWT. More precisely, the XBWT contains
a node v with reverse node label ω = λ(v)R if and only if there exists a ω$-interval
[i, j] in the BWT L of S where all suffixes share the common prefix ω$. In such a case,
the bit-vector MR indicates the start and the end of the interval, i.e. MR[i..j + 1] =
10j−i1. Figure 5.20 gives an example of the bit-vector MR of the running example.

The k-mer prefix interval marking bit-vectors Din and Dout mark the start and
end of a prefix interval. Let [i, j] and [i′, j′] be two k-mer intervals fulfilling the
predecessor-successor relationship of a k-mer prefix interval, i.e. [LF[i], LF[j]] = [i′, j′]
and L[i] = . . . = L[j]. Then Dout and Din contain markings where a possible tunnel
can start and end, that is, Din[i..j] = Dout[i′..j′] = 10j−i. An example of k-mer

5.4 T R I E T U N N E L I N G 179

i MR[i] cntc[i] L[i] Dout[i] Din[i] rotations
1 1 0 A 1 1 $A · · ·
2 0 0 A 1 0 $A · · ·
3 0 0 C 1 1 $C · · ·
4 1 0 G 1 1 A$ · · ·
5 0 0 C 0 1 A$ · · ·
6 1 1 $ 1 1 AGCA$ · · ·
7 1 2 $ 1 1 AGTGGC$ · · ·
8 1 0 G 1 1 C$ · · ·
9 1 2 G 1 1 CA$ · · ·

10 1 1 T 1 1 GA$ · · ·
11 1 0 T 1 1 GC$ · · ·
12 1 2 A 1 1 GCA$ · · ·
13 1 1 $ 1 1 GGTGA$ · · ·
14 1 1 A 0 1 GGTGC$ · · ·
15 1 1 G 1 1 GTGA$ · · ·
16 1 1 G 0 0 GTGC$ · · ·
17 1 1 G 1 1 TGA$ · · ·
18 1 2 G 1 0 TGC$ · · ·
19 1 1 1

iv LX [i] λ(π[iv])R

A

C

C

G

$
$
G

G

T

T

A

$
A

G

G

G

G

1 ε

2 A

3 AGCA

4 AGGTGC
5 C

6 CA

7 GA

8 GC
9 GCA

10 GGTGA

11 GGTGC

12 GTGA

13 GTGC

14 TGA

15 TGC

Figure 5.20: Components required to construct a tunneled XBWT (left) and normal XBWT
(right). The XBWT is constructed from the strings S1 = ACGA$, S2 =
CGTGGA$ and S3 = AGTGG$. The left side shows the sorted rotations of S =
AGCA$AGGTGC$GGTGA$ and contains the 2-mer prefix intervals (6, 1, 4), (7, 2, 5)
and (17, 15, 13), (18, 16, 14). The blue prefix interval does not induce a prefix
interval in the XBWT because the zero markings in Dout and Din are placed at
positions i where MR[i] 6= 1 holds. Additionally, the markings of the prefix inter-
val (6, 1), (7, 2) were removed by Algorithm 5.15 to ensure that no $-characters
are removed by tunneling. The red prefix interval induces a prefix interval in
the XBWT. The explicit failure link of the start of the interval starts at position
14, while the implicit failure link starts at position 15 in the XBWT.

intervals and markings in Dout and Din can be found in Figure 5.20. In general, a
zero in Din indicates an edge that points to a node which is removed by tunneling.
Analogously, a zero in Dout indicates an edge coming from a node which is removed
by tunneling. In all other cases, the edges point to or come from nodes which
“survive” the tunneling process.

The key observation is that entries i in Dout and Din where MR[i] = 1 hold induce
markings of k-mer prefix intervals in the XBWT. This means that the reduced bit-
vectors Dout[selectMR(1, j)] and Din[selectMR(1, j)] with j ∈ [1, rankMR(1, |MR|)] are
suitable for tunneling an XBWT, see also Figure 5.20. To see this, we regard only
k-mer intervals belonging to a prefix interval, i.e. the intervals contain zeros in either
Dout or Din. Furthermore, we distinguish two cases, depending on the length of the
node labels belonging to the intervals.

180 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Let ω be a string with length |ω| = k. The set Vω of nodes whose reverse labels
share the prefix ω can be associated to the ω-interval in L. The association of a
left-extended node set Vcω to the cω-interval in L follows analogously. In the case
that the ω- and cω-intervals are start- and end-columns of a k-mer prefix interval,
then clearly, all outgoing edges from Vω must be labeled with c and point into Vcω.
This means that a k-mer prefix interval in the XBWT is implied. Now, let [i, j] be an
ω-interval contained in a k-mer prefix interval. Then, Din[i] = 1 and MR[i] = 1 must
hold because i is the left boundary of the MR-interval associated to the node with
the lexicographically smallest reversed label within Vω. For all remaining positions
l ∈ [i + 1, j] with MR[l] = 1, Din[l] = 0 holds because of the markings in the ω-
interval. This shows that the markings in the reduced bit-vector Din are analogous
to the normal markings. The same holds true for the reduced bit-vector Dout.

The other case considers nodes v whose node label λ(v) is less than k characters
long. In this case, because a BWT is viewed cyclically, we can associate multiple k-mer
intervals ω$x1, ω$x2, . . . to the node. These k-mer intervals cannot be associated to
any other node, because no node label contains the character $. Also, these intervals
span a consecutive range [i, j] in L because of the lexicographical order. Within this
range, MR[i..j] = 10j−i must hold, because those entries belong to the node v. In case
that any k-mer interval in the range is contained in a prefix interval, all except of the
first entry in Dout and Din are zero. This means that the range [i, j] must start with a
1, so Dout[i] = Din[i] = MR[i] = 1 must hold. The node v thus does not belong to a
k-mer prefix interval in the XBWT. This is correct because its label has got less than
k characters.

We now need to be aware of two special cases. First, tunneling of an XBWT must
not remove edges that are labeled with $. The reason is that the $’s are required to
associate a leaf in the trie to a record. Second, the nodes at a tunnel end must have an
outdegree of exactly one. If this is not the case, tunneling could accidentally change
the shape of the trie, because branching nodes are interpreted as tunnel ends.

To handle both cases, we make use of the prefix interval “unmarking” algorithm
from Page 134. The algorithm requires an FM-index as well as two bit-vectors Din

and Dout which contain possible starts and ends of prefix intervals. A 10∗1-sequence
in Din indicates a possible prefix interval start, a 10∗1-sequence in Dout a possible
prefix interval end. The algorithm then checks if the conditions of a prefix interval
are met and if a possible prefix interval start can be associated to a prefix interval
end. If this is not the case, the markings in Din and Dout are cleared, resulting in a
valid prefix interval marking.

5.4 T R I E T U N N E L I N G 181

Data: Strings S1, . . . , Sm, BWT L in form of an FM-index of the string S = S1[1..|S1| − 1]R · · · Sm[1..|Sm| − 1]R$ of
length n, bit-vector MR computed from Algorithm 5.9, k-mer interval boundary bit-vector B computed from
Algorithm 5.5.

Result: k-mer prefix interval markings Dout and Din where no prefix interval containing a $ is marked and no
conflicts between branching nodes in the trie and tunnel ends exist.

1 Din ← B
2 Dout ← B

// unmark possible prefix interval ends containing a $
3 for i← 1 to m do
4 Dout[i]← 1

// unmark possible prefix interval ends at branching nodes
// computation can be integrated in MR-computation Algorithm 5.9

5 foreach MR-range [i, j] with MR[i..j + 1] = 10j−i1 and |getIntervalsL(i, j)| > 1 do
6 Dout[i + 1]← 1

// unmark invalid prefix interval markings
7 run Algorithm 5.2 with Din and Dout

8 return 〈Dout, Din〉

Algorithm 5.15: Computation of a k-mer prefix interval marking suitable for XBWT
tunneling.

We can use this algorithm as follows: for possible prefix interval starts we use
the k-mer interval boundaries bit-vector B from Algorithm 5.5, analogously to the
computation of k-mer prefix interval markings. For possible prefix interval ends, we
use the bit-vector B as base, but set additional bits that consider the special cases.

• By setting Dout[1..m] = 1m, we can ensure that no $ is contained in a prefix
interval.

• Let [i, j] be the MR-range of a branching node, i.e. MR[i..j + 1] = 10j−i1 and
|getIntervalsL(i, j)| > 1. By setting Dout[i + 1] = 1, we can avoid conflicts
between prefix interval ends and the branching node.

Because each prefix interval containing a $ must point through the range [1, m],
prefix intervals are interrupted by ones in Dout[1..m]. In case of a branching node in
an MR-range [i, j], we note that j− i ≥ 1. Setting Dout[i + 1] = 1 now has two effects:
first, any k-mer prefix interval is interrupted. Second, as left-extensions of k-mer
intervals coincide with ones in MR, we ensure that no additional prefix intervals
are marked accidentally. Algorithm 5.15 shows how a valid prefix interval marking
taking both special cases into consideration can be computed.

Using the knowledge about induced k-mer prefix intervals in an XBWT, a con-
struction algorithm for the “shape components” L̃, Dout and Din can be formulated.
The idea is to merge the XBWT “shape component” construction Algorithm 5.10
with the tunneling Algorithm 3.3.

182 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: Strings S1, . . . , Sm, BWT L in form of an FM-index of the string S = S1[1..|S1| − 1]R · · · Sm[1..|Sm| − 1]R$ of
length n, bit-vector MR computed from Algorithm 5.9, prefix interval markings Dout and Din computed from
Algorithm 5.15.

Result: Tunneled XBWT components L̃X , Dout and Din.

1 initialize a string L̃X of size rankMR(1, n) + m− 1
2 i← 1
3 iout ← 1 // output position in Dout and L̃X
4 iin ← 1 // output position in Din

5 for j← 1 to n do
6 if MR[j + 1] = 1 then
7 b← Dout[i]
8 if Din[i] = 1 then
9 M← getIntervalsL(i, j)

10 foreach 〈c, [lb, rb]〉 ∈ M do
11 L̃X [iout]← c
12 Dout[iout]← 0

13 iout ← iout + 1

14 Dout[iout − |M|]← b

15 if b = 1 then
16 Din[iin]← Din[i]
17 iin ← iin + 1

18 i← j + 1

19 trim L̃X to size iout − 1
20 trim Dout to size iout and set Dout[iout]← 1

21 trim Din to size iin and set Din[iin]← 1

22 return 〈L̃X , Dout, Din〉

Algorithm 5.16: Construction of the tunneled XBWT components L̃X, D̃out and D̃in using
the BWT L and the k-mer prefix interval markings Dout and Din.

As a reminder, the tunneling algorithm requires the markings of prefix intervals in
the bit-vector Dout and Din and produces a tunneled BWT as follows. The algorithm
scans the components L, Dout and Din in a front-to-back scan.

• If Din[i] = 1 holds, the entries L[i] and Dout[i] are appended to L̃ and D̃out.

• If Dout[i] = 1 holds, the entry Din[i] is appended to D̃out.

Because D̃in and D̃out are shorter than Din and Dout, Din and Dout can be overwritten
by D̃in and D̃out during this process.

The XBWT shape component construction algorithm requires the bit-vector MR

and L as input and works as follows. In a front-to-back scan, each MR-interval is
enumerated. For each such interval [i, j], the labels of outgoing edges of the corre-
sponding node are determined using M← getIntervalsL(i, j). Then, the characters in
the set M are appended to LX. Additionally, the sequence 10|M|−1 is appended to a
bit-vector Dout.

To combine the algorithms, we first enumerate all MR-intervals [i, j] in a front-to-
back scan. The labels of outgoing edges are determined using M← getIntervalsL(i, j).

5.4 T R I E T U N N E L I N G 183

• If Din[i] = 1 holds, we append the characters in M to L̃X and also append the
bit Dout[i] followed by the sequence 0|M|−1 to a bit-vector D̃out.

• If Dout[i] = 1 holds, we append the bit Din[i] to a bit-vector D̃in.

Analogous to the tunneling algorithm, Din and Dout can be overwritten by D̃in

and D̃out during the process. Algorithm 5.16 shows the construction in full detail,
requiring O(n log σ) worst-case time.

We now come to the construction of the balanced parentheses sequence P̃ used for
failure link support. The original sequence P for a normal XBWT is constructed with
the support of MR and the counter array cntc. Using a front-to-back scan, at each
position i exactly MR[i] opening and cntc[i] closing parentheses are appended to the
sequence P. Note that the i-th opening parenthesis in P refers to the i-th node in the
XBWT, or equivalently, to the i-th set bit in MR.

In a tunneled XBWT, we have to store both explicit and implicit failure links.
Explicit failure links come from nodes which are not removed by tunneling. Let
Din and Dout be the prefix interval markings computed by Algorithm 5.15. Explicit
failure links then refer to entries i where MR[i] = Dout[i] = Din[i] = 1 holds. Implicit
failure links are failure links from nodes at the start of a tunnel which are removed
by tunneling. These links refer to entries i where MR[i] = Dout[i] = 1 hold (start of a
tunnel), but Din[i] = 0 holds because the node is removed later, see Figure 5.20.

Using this knowledge, an easy construction of P̃ would be as follows. We use
the original sequence of P as a base. For each i-th set bit in MR we check if the
bit in Dout is cleared, i.e. Dout[selectMR(1, i)] = 0. In this case, the corresponding
failure link is neither explicit nor implicit, so we remove the opening parenthesis
selectP(”(”, i) as well as the closing parenthesis findcloseP(selectP(”(”, i)) from P.
However, this approach has a problem: we first need to construct P, then initialize
balanced parentheses support, construct P̃ and then initialize balanced parentheses
support once more for P̃.

A direct approach is possible because of the isolation Lemma 5.15 from the last
section. This lemma states that no failure link from outside can point into a set Vω

of nodes. This implies that the failure links pointing out of Vω induce a balanced
parentheses subsequence inside P. More precisely, all parentheses belonging to such
failure links form a consecutive subsequence in P.

This allows us to simplify the construction of P̃. Analogous to the normal construc-
tion, we use a front-to-back scan and the components MR and cntc. In contrast to the
normal construction, when we reach an entry i with MR[i] = 1 and Dout[i] = 0, we

184 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

Data: Bit-vector MR and counter array cntc computed from Algorithm 5.9, k-mer prefix interval marking Dout

computed in Algorithm 5.15.
Result: Tunneled XBWT failure link component P̃.

1 initialize a parentheses sequence P of size 2 · rankMR(1, n)
2 k← 1
3 skip← 0
4 for i← 1 to n do

// write opening parenthesis in case of explicit or implicit failure link
5 if MR[i] = 1 then
6 if Dout[i] = 1 then
7 P̃[k]← ”(”
8 k← k + 1

9 else
10 skip← skip + 1

// write closing parentheses
11 if cntc[i] > skip then
12 for j← 1 to cntc[i]− skip do
13 P̃[k]← ”)”
14 k← k + 1

15 skip← 0

16 else
17 skip← skip− cntc[i]

18 trim P̃ to size k
19 return P̃

Algorithm 5.17: Construction of the tunneled XBWT component P̃ using the components
MR and cntc computed from XBWT construction and the k-mer prefix interval marking
Dout. A similar algorithm appeared in a student project [RHRH20].

do not append an opening parentheses to P̃. Instead, we increment a variable skip.
This variable then is used to skip the appendage of the next skip closing parenthe-
ses. In case that cntc[i] is greater than skip, we append exactly cntc[i]− skip closing
parentheses to P̃ and set skip to zero. If cntc[i] is lower than or equal to the value of
skip, we subtract cntc[i] from the variable skip. This ensures that only the topmost
failure link of a fused column in a prefix interval remains in P̃. The construction
requires O(n) worst-case run-time and is shown in Algorithm 5.17.

We want to note that the construction of P̃ should be performed before the con-
struction of the shape components L̃X, Dout and Din because the construction of
the shape components overwrites the prefix interval markings in Dout. The remain-
ing components C̃X and the record array R can be constructed similarly to their
construction in a normal XBWT.

Corollary 5.17. Let S1, . . . , Sm be a set of null-terminated strings and let S be a string of
length n defined as S := S1[1..|S1| − 1]R$ · · · Sm[1..|Sm| − 1]R$. A tunneled XBWT of the
extended trie Tex(S1, . . . , Sm) can be constructed in O(n log σ + m log m) time with the
following steps:

5.4 T R I E T U N N E L I N G 185

1. Suffix array construction and FM-index construction of S in O(n log σ) time.

2. Construction of MR and cntc with Algorithm 5.9 in O(n log σ) time.

3. Construction of the k-mer prefix interval markings Din and Dout with the Algorithms
5.5, 5.2 and 5.15 in O(n log σ) time using MR and the FM-index of S.

4. Construction of the balanced parentheses sequence P̃ with Algorithm 5.17 in O(n)
time using the arrays cntc and MR.

5. Construction of the shape components L̃X, Dout and Din with Algorithm 5.16 in
O(n log σ) time using the FM-index, MR and the markings in Dout and Din.

6. Construction of the C̃X array using L̃X in O(n) time.

7. Construction of the record array R using Algorithm 5.12 and SA[1..m] in O(m log m)

time.

Unfortunately, we cannot make statements about the optimality of the tunneling
strategy in tries. The reason is that we cannot tunnel all k-mer prefix intervals
contained in the normal BWT. For nodes with a label length which is less than
k, the trie itself compresses the input because of the tree structure. Furthermore,
it is not possible to tunnel “cyclic” k-mer prefix intervals, that is, prefix intervals
containing a $. Finally we cannot tunnel prefix intervals ending at a branching node
in the trie to avoid conflicts between tunnel ends and branching nodes. However,
compared to tunneled FM-indices from Section 5.2.3, the overhead of tunneling
consists only of the additional Din component. Furthermore, the number of failure
links is reduced by the number of removed edges in the trie, enabling compression
within this component. In the next section, we will examine the compression using
real-world data.

5.4.4 Experimental results

We have seen that the concepts of tunneling and trie representation using a BWT vari-
ant harmonize. Now it is time to see whether tunneling provides good compression
results. Note that we have already shown results for tunneled XBWT construction in
Section 5.3.2. For further information about construction performance, we refer to
the Figures C.6 and C.7.

186 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

largecanterbury

silesia

pizzachili

repetitive

Trie size in bytes per input symbol

te
xt

co
rp

us

XBWT representation Tunneled XBWT representation

Figure 5.21: Average sizes of extended trie representations in bytes per symbol, grouped
by text corpora. A trie size with less than 1 byte per character indicates that
the trie compresses the input. Most representations do not compress the input
because they contain additional components to support failure links and record
mapping. The full underlying data can be found in Figure C.5.

We used the same input data as described in Section 5.3.2. The implementation
of our algorithms is publicly available [Bai20]. For each file listed in Chapter A,
we removed empty lines, lines containing a nullbyte and lines with less than 10
characters. Additionally, we removed lines containing other lines as proper substring
to ensure correctness of the Aho-Corasick algorithm. From such modified files we
used only files with more than 1 MB of size and more than 1000 lines to ensure a
certain branching factor and size of the resulting trie. More details on the used input
data and results for each file can be found in Section C.2.

Figure 5.21 shows the sizes of a normal XBWT compared to a tunneled XBWT. In
general, tunneling reduces the representation size by an amount of approximately
10 %. The best compression results are achieved for repetitive data, i.e. collections of
similar strings. In these cases, the average trie representation size could be reduced
by about 1/3 using tunneling. However, we want to emphasize that tunneling does
not always compress the representation. In some cases, the size of a tunneled XBWT
is larger than the size of a normal XBWT. In accordance with Section 5.2.3, the
number of reduced edges using the de Bruijn edge minimization is too small to
overcome the space penalty of the additional component Dout. Those cases can be
seen on Page 223.

We also compared the data throughput of a multi-pattern search using the Aho-
Corasick algorithm [AC75] with the different representations. The method can be
described as follows: for each test file, we constructed a XBWT and a TXBWT. The
resulting tries then were used to find all occurrences of their contained strings within

5.4 T R I E T U N N E L I N G 187

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Multi-pattern search speed (string length / required time) in MB/s

multiple single-pattern searches
for all desired patterns using grep

Aho-Corasick algorithm using
XBWT representation
Aho-Corasick algorithm using
tunneled XBWT representation

Figure 5.22: Average speed of the multi-pattern search using the Aho-Corasick algorithm
compared to multiple single-pattern searches for all patterns using the linux
command grep. The Aho-Corasick algorithm uses a priori constructed tries of
the test files and searches for all occurrences of the test file lines within the same
test file. The full underlying data can be found in Figure C.8.

the test file itself. We removed newline characters from the test file before the search,
so the number of occurrences is higher than the number of strings in the trie.

Figure 5.22 shows the average data throughput in this multi-pattern search sce-
nario. The multi-pattern search using a tunneled XBWT is about 5 % slower than one
with a normal XBWT, mainly because the navigational and failure link operations
are more complex. To compare the speed with other pattern search programs, we
included the popular linux command grep.3 We simulated a search for all patterns
by executing grep once with the last line of each test file as pattern, and multiplied
this time by the number of lines in the test file. This approximation was necessary
because multiple grep executions with a large number of patterns would take an
incredibly long time. We did not use the multi-pattern search feature of grep be-
cause the required memory exceeded our RAM size in the case of a large number of
patterns.

Unsurprisingly, the multi-pattern search with XBWT variants is much faster than
grep if the number of patterns is large. In the case that the number of patterns is
low (e.g. less than 1000), it is sometimes beneficial to use grep because a single
grep execution is very fast, and Figure 5.22 does not include the extra time of trie
construction. More information about data throughput for each test file can be found
in Figure C.8.

As a conclusion, we can say that tunneling an XBWT is beneficial if the underlying
data is both big and repetitive. An XBWT is one of the most succinct representa-
tions of a dictionary of strings [MP+16], and tunneling allows one to compress this
representation even more. The disadvantage in timings of navigational and failure
link operations can be neglected because of the high compression rates. It might be

3 https://www.gnu.org/software/grep/manual/grep.html

https://www.gnu.org/software/grep/manual/grep.html

188 A P P L I C AT I O N I N S E Q U E N C E A N A LY S I S

worth to develop specialized tunnel planning strategies for an XBWT. Presently, this
work proposed the first approach to tunnel an XBWT. We did not find arguments
for tunnel planning optimality yet, but state this as an open problem. Moreover,
tunneling an XBWT is interesting in its own right, because it converts a trie into a
word graph which fully emulates the trie. Therefore, we think that trie tunneling is
a concept with high potential.

6
C O N C L U S I O N

We proposed tunneling as a new compression scheme for the Burrows-Wheeler
transform. Originally, we presented tunneling for the purpose of data compression
[Bai18]. Then, Alanko et al. extended tunneling to Wheeler graphs [Ala+19]. This
allows tunneling to be applied not only in pure data compression but also in fields
of sequence analysis.

Our main contribution to the theory of tunneling (Chapter 3) is the proposal of
criteria for overlappings between prefix intervals to be tunneled. Moreover, we
presented complexity results to the Wheeler graph prefix interval cover problem.
This shows that tunnel planning is difficult to be solved exactly. Additionally, it
turns out that tunnel planning is difficult to be solved approximately.

It might be interesting to obtain more complexity results on tunnel planning.
It would be especially interesting to know results when only overlayable prefix
intervals are allowed to be tunneled. Also, it would be important to know more
about the complexity situation for the restricted class of run-terminated length-
maximal prefix intervals. We suppose that the planning problems remain NP-hard
in these special situations, but gave no results and therefore state this as an open
problem.

In the second part of this thesis, we presented tunneling in the field of data
compression. We presented methods to trim the auxiliary tunnel information to
a size relative to the number of runs, significantly reducing the tunneling costs.
Using a cost model, we were able to devise heuristics which were able to select a
good choice of prefix intervals to be tunneled. As a result, we were able to improve
the compression rate of two state-of-the-art BWT compressors by about 9% on
average and up to 55% in the best cases. It was shown that tunneling has the biggest
compression impact on very big and repetitive files.

It may be possible to improve the compression rates even more. However, we
experimentally showed that our tunnel strategies achieves results which are close
to the optimum. Therefore, we assume that more sophisticated strategies will only
show small improvements. The main problem of BWT-based compressors is de-
compression speed and decompression memory peak, which was not addressed in

189

190 C O N C L U S I O N

this thesis. However, we showed that the compressors are competitive to modern
state-of-the-art compressors using tunneling.

An interesting application of run-terminated length-maximal prefix intervals
could be given in the compression of run-length encoded wavelet trees [MN05].
During the data compression conference 2020 (which took place virtually for the
first time), Dominik Köppl stated

[...] I was wondering in the experiments whether this compressed FM-
index can be put into relation with the run-length compressed FM-index,
as the run-length compression is kind of similar (it needs also additional
bit vectors). [Köp20]

Combining the special prefix interval class with the run-length encoded FM-index,
it should be possible to reduce the length of the two additionally used bit-vectors.
Associating this index with the new development of the r-index [GNP18] could end
up in a very good compression for repetitive inputs.

Currently, the most promising application of tunneling can be found in the field
of sequence analysis. We presented the de Bruijn graph edge minimization problem
and showed a deep connection between the problem and tunneling of the special
class of k-mer prefix intervals. We also presented an efficient algorithm to solve the
problem. As experiments have shown, this allows one to reduce the BWT length by
an average of 80% for repetitive inputs. Unfortunately, it has been shown that this
approach is not suitable for pure data compression.

However, it has been shown that this tunneling strategy is suitable for the use
in sequence analysis. We presented a BWT-based representation of tries, which
among other representations offers the best dictionary compression rates to date
[MP+16]. Our contribution to tries was the presentation of fast and memory-saving
construction methods. Moreover, we presented algorithms to tunnel tries using
the de Bruijn graph edge minimization approach. Though it is not surprising that
trie tunneling is possible (tries can be expressed as Wheeler graphs [GMS17]), we
showed that failure links can be retained in tunneled tries. A key to this result was
the use of the special class of k-mer prefix intervals.

Failure links allow one to perform efficient multi-pattern matching with the Aho-
Corasick algorithm [AC75]. We conducted experiments showing that the pattern
search speed remains almost unchanged when using tunneled instead of normal
tries. We were not able to achieve the same compression improvements as in the
de Bruijn graph edge minimization problem. This is due to the circumstance that

C O N C L U S I O N 191

we had to modify the input data to ensure that the simple version of the Aho-
Corasick algorithm works correctly. Within repetitive data, tunneled tries were
around 30% smaller than the normal ones, underlining the good compression rates
of tunneling on repetitive data. We also presented a way to extend BWT-based
tries with a structure that allows one to execute the Aho-Corasick algorithm with
arbitrary patterns. It could be interesting to implement and test this approach, but
we refrained from doing so because we wanted to keep the implementation simple.

Recently, it has been shown that a multi-string BWT or context-tree based struc-
tures allows for good sequence predictions [Gue+15; Kti+19]. The basic idea is to use
the multi-string BWT to predict probabilities for the next character by counting the
character frequencies in the BWT within a ω-interval. This can be done efficiently
with the help of the intervalsymbols function of a wavelet tree. The context-tree struc-
ture can be represented by a sequence of balanced parentheses, see e.g. [Ohl13,
Section 6.3].

This form of context-tree representation is quite similar to the BWT-based repre-
sentation of tries. We have seen that trie tunneling leaves failure links intact, so it is
very likely that it does the same for the context-tree structure. The de Bruijn graph
edge minimization tunneling approach reduces edges if and only if a certain context
is preceded by the same character. Removing this characters does not influence the
relative probability of the character within the context. Therefore, we suppose that
tunneling allows one to compress the “knowledge base” for sequence prediction.

It may be possible to use this compressed knowledge base for other data compres-
sion methods like prediction by partial matching [CW84] or context-tree weighting
[WST95]. Both methods are known to offer good compression, but are limited by the
memory consumption of their used context tree. Using adaptions of trie tunneling, it
could be possible to use a large context tree for these methods. The problem of static
BWT-based structures could be solved by computing pseudo-random substring
samples of the string which cover e.g. about 20% of the string to be compressed. Cre-
ating a BWT-based knowledge base from these samples then allows one to compress
the remaining 80% of the string with the original methods. However, we have not
implemented such a method yet, but propose this as a future project.

In conclusion, we showed that tunneling is a useful method to compress data
and to compress data structures. In the age of “big data”, the need for compression
methods of large and very repetitive data sets is increasing. As experiments show,
this is the main strength of tunneling. Tunneling is also applicable in sequence
analysis, which is useful when the data should be processed.

B I B L I O G R A P H Y

[Abe10] Jürgen Abel. “Post BWT Stages of the Burrows–Wheeler Compression
Algorithm.” In: Software Practice and Experience 40.9 (2010), pp. 751–777.

[AKO04] Mohamed I. Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. “Re-
placing suffix trees with enhanced suffix arrays.” In: Journal of Discrete
Algorithms 2.1 (2004), pp. 53–86.

[AC75] Alfred V. Aho and Margaret J. Corasick. “Efficient String Matching: An
Aid to Bibliographic Search.” In: Communications of the ACM 18.6 (1975),
pp. 333–340.

[Ala+19] Jarno Alanko, Travis Gagie, Gonzalo Navarro, and Louisa Seelbach
Benkner. “Tunneling on Wheeler Graphs.” In: Proceedings of the 2019
Data Compression Conference. DCC ’19. 2019, pp. 122–131.

[Bai16] Uwe Baier. “Linear-time Suffix Sorting - A New Approach for Suffix
Array Construction.” In: Annual Symposium on Combinatorial Pattern
Matching. CPM ’16. 2016, 23:1–23:12.

[Bai18] Uwe Baier. “On Undetected Redundancy in the Burrows-Wheeler
Transform.” In: Annual Symposium on Combinatorial Pattern Matching.
CPM ’18. 2018, 3:1–3:15.

[Bai20] Uwe Baier. BWT Tunneling API. https://github.com/waYne1337/BWT-
Tunneling. Last visited July 2020. 2020.

[BBO16] Uwe Baier, Timo Beller, and Enno Ohlebusch. “Graphical pan-genome
analysis with compressed suffix trees and the Burrows-Wheeler trans-
form.” In: Bioinformatics 32.4 (2016), pp. 497–504.

[BBO17] Uwe Baier, Timo Beller, and Enno Ohlebusch. “Space-Efficient Parallel
Construction of Succinct Representations of Suffix Tree Topologies.” In:
Journal of Experimental Algorithmics 22.1 (2017), 1.1:1–1.1:26.

[BD19] Uwe Baier and Kadir Dede. “BWT Tunnel Planning is Hard But Man-
ageable.” In: Proceedings of the 2019 Data Compression Conference. DCC
’19. © 2019 IEEE. 2019, pp. 142–151.

193

https://github.com/waYne1337/BWT-Tunneling
https://github.com/waYne1337/BWT-Tunneling

194 B I B L I O G R A P H Y

[Bai+20] Uwe Baier, Thomas Büchler, Enno Ohlebusch, and Pascal Weber. “Edge
minimization in de Bruijn graphs.” In: Proceedings of the 2020 Data
Compression Conference. DCC ’20. © 2020 IEEE. 2020, pp. 223–232.

[Bel14] Djamal Belazzougui. “Linear time construction of compressed text
indices in compact space.” In: Proceedings of the 46th Annual ACM Sym-
posium on Theory of Computing. STOC ’14. 2014, pp. 148–193.

[Bel17a] Timo Beller. “Space-efficient construction and applications of basic data
structures in full text indexing.” PhD thesis. University of Ulm, 2017.

[BBO12] Timo Beller, Katharina Berger, and Enno Ohlebusch. “Space-Efficient
Computation of Maximal and Supermaximal Repeats in Genome Se-
quences.” In: Proceedings of the 19th International Symposium on String
Processing and Information Retrieval. SPIRE ’12. 2012, pp. 99–110.

[Bel17b] David Belson. State of the Internet Report Q1 2017. Tech. rep. 1. akamai,
2017.

[BD97] Piotr Berman and Bhaskar DasGupta. “Complexities of Efficient So-
lutions of Rectilinear Polygon Cover Problems.” In: Algorithmica 17.4
(1997), pp. 331–356.

[BW94] Michael Burrows and David J. Wheeler. A block-sorting lossless data
compression algorithm. Tech. rep. 124. Digital Equipment Corporation,
1994.

[CN09a] Christopher Clapham and James Nicholson. The Concise Oxford Dictio-
nary of Mathematics. 4th ed. Oxford University Press, 2009.

[CN09b] Francisco Claude and Gonzalo Navarro. “Practical Rank/Select Queries
over Arbitrary Sequences.” In: Proceedings of the 2009 String Processing
and Information Retrieval Conference. SPIRE ’09. 2009, pp. 176–187.

[Cla00] Clay Mathematics Institute. Millenium Problems. http://www.claymath.
org/millennium-problems. Last visited December 2019. 2000.

[CW84] John G. Cleary and Ian H. Witten. “Data Compression Using Adaptive
Coding and Partial String Matching.” In: IEEE Transactions on Communi-
cations 32.4 (1984), pp. 396–402.

[Col10] Lasse Collin. XZ Utils. https://tukaani.org/xz/. Last visited June
2020. 2010.

http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems
https://tukaani.org/xz/

B I B L I O G R A P H Y 195

[Coo71] Stephen A. Cook. “The Complexity of Theorem-proving Procedures.”
In: Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing. STOC ’71. 1971, pp. 151–158.

[CR94] Joseph C. Culberson and Robert A. Reckhow. “Covering Polygons Is
Hard.” In: Journal of Algorithms 17.1 (1994), pp. 2–44.

[CAB19] Fabio Cunial, Jarno Alanko, and Djamal Belazzougui. “A framework
for space-efficient variable-order Markov models.” In: Bioinformatics
35.22 (2019), pp. 4607–4616.

[DeB46] Nicolas G. DeBruijn. “A Combinatorial Problem.” In: Koninklijke Neder-
landse Akademie V. Wetenschappe 49 (1946), pp. 758–764.

[Ded18] Kadir Dede. “Blockwahl beim Tunneln von Burrows Wheeler Transfor-
mationen.” Elaboration of Project Algorithm Engineering 2018 (draft
by Uwe Baier). 2018.

[Dre07] Ulrich Drepper. What every programmer should know about memory. https:
//people.freebsd.org/~lstewart/articles/cpumemory.pdf. Last
visited April 2020. 2007.

[Egi+19] Lavinia Egidi, Felipe A. Louza, Giovanni Manzini, and Guilherme P.
Telles. “External memory BWT and LCP computation for sequence
collections with applications.” In: Algorithms for Molecular Biology 14.6
(2019).

[Fan49] Robert M. Fano. The Transmission of Information. Tech. rep. 65. Mas-
sachusetts Institute of Technology, 1949.

[Fer13] Henning Fernau. Lecture slides of the data compression course. https:
//www.uni-trier.de/fileadmin/fb4/prof/INF/TIN/Folien/DK/ss_

2013/vorlesung01.pdf. Last visited June 2020. 2013.

[FM05] Paolo Ferragina and Giovanni Manzini. “Indexing Compressed Text.”
In: Journal of the ACM 52.4 (2005), pp. 552–581.

[Fer+05] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and Senthilmuru-
gan Muthukrishnan. “Structuring Labeled Trees for Optimal Succinct-
ness, and Beyond.” In: Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science. FOCS ’05. 2005, pp. 184–196.

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://www.uni-trier.de/fileadmin/fb4/prof/INF/TIN/Folien/DK/ss_2013/vorlesung01.pdf
https://www.uni-trier.de/fileadmin/fb4/prof/INF/TIN/Folien/DK/ss_2013/vorlesung01.pdf
https://www.uni-trier.de/fileadmin/fb4/prof/INF/TIN/Folien/DK/ss_2013/vorlesung01.pdf

196 B I B L I O G R A P H Y

[FK17] Johannes Fischer and Florian Kurpicz. “Dismantling DivSufSort.” In:
Proceedings of the Prague Stringology Conference 2017. PSC ’17. 2017,
pp. 62–76.

[Fre60] Edward Fredkin. “Trie Memory.” In: Communications of the ACM 3.9
(1960), pp. 490–499.

[GMS17] Travis Gagie, Giovanni Manzini, and Jouni Sirén. “Wheeler graphs: A
framework for BWT-based data structures.” In: Theoretical Computer
Science 698 (2017), pp. 67–78.

[GNP18] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. “Optimal-Time Text
Indexing in BWT-runs Bounded Space.” In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’18.
2018, pp. 1459–1477.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[Gar06] Sachin Garg. 64-bit Range Coding and Arithmetic Coding. http://www.
sachingarg.com/compression/entropy_coding/64bit. Last visited
June 2020. 2006.

[Gea+06] Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Ra-
man. “A simple optimal representation for balanced parentheses.” In:
Theoretical Computer Science 368.3 (2006), pp. 231–246.

[Gen] Genomics England. The 100, 000 Genomes Project.
https://www.genomicsengland.co.uk/about-genomics-england/

the-100000-genomes-project/

. Last visited June 2020.

[GT19] Daniel Gibney and Sharma V. Thankachan. “On the Hardness and
Inapproximability of Recognizing Wheeler Graphs.” In: 27th Annual
European Symposium on Algorithms. ESA ’19. 2019, 51:1–51:16.

[Gog07] Simon Gog. SDSL lite. https://github.com/simongog/sdsl-lite.
Last visited February 2020. 2007.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. “High-order Entropy-
compressed Text Indexes.” In: Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms. SODA ’03. 2003, pp. 841–850.

http://www.sachingarg.com/compression/entropy_coding/64bit
http://www.sachingarg.com/compression/entropy_coding/64bit
https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/
https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/
https://github.com/simongog/sdsl-lite

B I B L I O G R A P H Y 197

[Gue+15] Ted Gueniche, Philippe Fournier-Viger, Rajeev Raman, and Vincent S.
Tseng. “CPT+: Decreasing the Time/Space Complexity of the Compact
Prediction Tree.” In: Advances in Knowledge Discovery and Data Mining
- 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam,
May 19-22, 2015, Proceedings, Part II. PAKDD ’15. 2015, pp. 625–636.

[HLL07] Laura Heinrich-Litan and Marco E. Lübbecke. “Rectangle Covers Re-
visited Computationally.” In: Journal of Experimental Algorithmics 11.2.6
(2007), pp. 55–66.

[Hir05] Jorge E. Hirsch. “An Index to Quantify An Individual’s Scientific Re-
search Output.” In: Proceedings of the National Academy of Sciences of the
United States of America 102.46 (2005), pp. 16569–16572.

[HSS03] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. “Breaking
a Time-and-Space Barrier in Constructing Full-Text Indices.” In: Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’03. 2003, pp. 251–260.

[Huf52] David A. Huffman. “A Method for the Construction of Minimum-
Redundancy Codes.” In: Proceedings of the IRE 40.9 (1952), pp. 1098–
1101.

[HMB06] Marcus Hutter, Matt Mahoney, and Jim Bowery. The Hutter Prize. http:
//prize.hutter1.net/. Benchmark results on http://mattmahoney.

net/dc/text.html. 2006.

[IW95] Ramana M. Idury and Michael S. Waterman. “A New Algorithm for
DNA Sequence Assembly.” In: Journal of Computational Biology 2.2 (1995),
pp. 291–306.

[Iqb+12] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean.
“De novo assembly and genotyping of variants using colored De Bruijn
graphs.” In: Nature genetics 44 (2012), pp. 226–32.

[Jac89] Guy Jacobson. “Space-efficient Static Trees and Graphs.” In: Proceedings
of the 30th Annual Symposium on Foundations of Computer Science. SFCS
’89. 1989, pp. 549–554.

[Jen06] Johan L. W. V. Jensen. “Sur les fonctions convexes et les inégalités entre
les valeurs moyennes.” In: Acta Mathematica 30.1 (1906), pp. 175–193.

http://prize.hutter1.net/
http://prize.hutter1.net/
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html

198 B I B L I O G R A P H Y

[Joh87] David S. Johnson. “The NP-completeness column: An ongoing guide.”
In: Journal of Algorithms 8.3 (1987), pp. 438–448.

[Kan84] Immanuel Kant. “Beantwortung der Frage: Was ist Aufklärung?” In:
Berlinische Monatsschrift (1784), pp. 481–494.

[KKP12] Juha Kärkkainen, Dominik Kempa, and Simon J. Puglisi. “Slashing the
Time for BWT Inversion.” In: Proceedings of the 2012 Data Compression
Conference. DCC ’12. 2012, pp. 99–108.

[KS03] Juha Kärkkäinen and Peter Sanders. “Simple Linear Work Suffix Array
Construction.” In: Proceedings of the 30th International Conference on
Automata, Languages and Programming. ICALP ’03. 2003, pp. 943–955.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems.” In:
Complexity of Computer Computations 40 (1972), pp. 85–103.

[Kas+01] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo
Park. “Linear-Time Longest-Common-Prefix Computation in Suffix Ar-
rays and Its Applications.” In: Proceedings of the 12th Annual Conference
on Combinatorial Pattern Matching. CPM ’01. 2001, pp. 181–192.

[Kim+03] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park.
“Linear-time Construction of Suffix Arrays.” In: Proceedings of the 14th
Annual Conference on Combinatorial Pattern Matching. CPM ’03. 2003,
pp. 186–199.

[KMP77] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. “Fast Pattern
Matching in Strings.” In: SIAM Journal on Computing 6.2 (1977), pp. 323–
350.

[KA03] Pang Ko and Srinivas Aluru. “Space Efficient Linear Time Construc-
tion of Suffix Arrays.” In: Proceedings of the 14th Annual Conference on
Combinatorial Pattern Matching. CPM ’03. 2003, pp. 200–210.

[Köp20] Dominik Köppl. DCC ’20 Sigport video comment. https://sigport.org/
documents/edge-minimization-de-bruijn-graphs. Last visited June
2020. 2020.

[Kti+19] Rafael Ktistakis, Philippe Fournier-Viger, Simon J. Puglisi, and Rajeev
Raman. “Succinct BWT-Based Sequence Prediction.” In: Database and
Expert Systems Applications. DEXA ’19. 2019, pp. 91–101.

https://sigport.org/documents/edge-minimization-de-bruijn-graphs
https://sigport.org/documents/edge-minimization-de-bruijn-graphs

B I B L I O G R A P H Y 199

[LD10] Heng Li and Richard Durbin. “Fast and accurate long-read alignment
with Burrows–Wheeler transform.” In: Bioinformatics 26.5 (2010), pp. 589–
595.

[Mah09] Matt Mahoney. ZPAQ. http://mattmahoney.net/dc/zpaq.html. Last
visited June 2020. 2009.

[Mah05] Matthew V. Mahoney. Adaptive Weighing of Context Models for Lossless
Data Compression. Tech. rep. CS-2005-16. Florida Institute of Technology,
2005.

[MN05] Veli Mäkinen and Gonzalo Navarro. “Succinct Suffix Arrays Based
on Run-length Encoding.” In: Nordic Journal of Computing 12.1 (2005),
pp. 40–66.

[MM93] Udi Manber and Gene Myers. “Suffix Arrays: A New Method for On-
Line String Searches.” In: SIAM Journal on Computing 5 (1993), pp. 935–
948.

[Man16] Giovanni Manzini. “XBWT Tricks.” In: Proceedings of the 23rd Interna-
tional Symposium on String Processing and Information Retrieval. SPIRE
’16. 2016, pp. 80–92.

[Man19] Giovanni Manzini. The Past and the Future of an Unusual Compressor.
https : / / www . cs . brandeis . edu / ~dcc / Programs /

Program2019InvitedPresentation.pdf

. Invited presentation of the 2019 Data Compression Conference. 2019.

[MLS14] Shoshana Marcus, Hayan Lee, and Michael C. Schatz. “SplitMEM: a
graphical algorithm for pan-genome analysis with suffix skips.” In:
Bioinformatics 30.24 (2014), pp. 3476–3483.

[MP+16] Miguel A. Martínez-Prieto, Nieves Brisaboa, Rodrigo Cánovas, Fran-
cisco Claude, and Gonzalo Navarro. “Practical compressed string dic-
tionaries.” In: Information Systems 56 (2016), pp. 73–108.

[Mas78] William J. Masek. Some NP-complete set covering problems. Unpublished
manuscript. 1978.

[Mor03] Yuta Mori. divsufsort. https://github.com/y-256/libdivsufsort.
Last visited November 2019. 2003.

[Mur16] Ilya Muravyov. BCM. https://github.com/encode84/bcm. Last visited
June 2020. 2016.

http://mattmahoney.net/dc/zpaq.html
https://www.cs.brandeis.edu/~dcc/Programs/Program2019InvitedPresentation.pdf
https://www.cs.brandeis.edu/~dcc/Programs/Program2019InvitedPresentation.pdf
https://github.com/y-256/libdivsufsort
https://github.com/encode84/bcm

200 B I B L I O G R A P H Y

[Na05] Joong C. Na. “Linear-Time Construction of Compressed Suffix Arrays
Using O(N Log N)-bit Working Space for Large Alphabets.” In: Pro-
ceedings of the 16th Annual Conference on Combinatorial Pattern Matching.
CPM ’05. 2005, pp. 57–67.

[Nav14] Gonzalo Navarro. “Wavelet trees for all.” In: Journal of Discrete Algo-
rithms 25 (2014), pp. 2–20.

[NZC09] Ge Nong, Sen Zhang, and Wai Hong Chan. “Linear Suffix Array Con-
struction by Almost Pure Induced-Sorting.” In: Proceedings of the 2009
Data Compression Conference. DCC ’09. 2009, pp. 193–202.

[Nor06] Marc Norton. Optimizing pattern matching for intrusion detection. http:
//docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf.
Last visited July 2020. 2006.

[Ohl13] Enno Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome
Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag,
2013.

[OSB18] Enno Ohlebusch, Stefan Stauß, and Uwe Baier. “Trickier XBWT Tricks.”
In: String Processing and Information Retrieval. SPIRE ’18. 2018, pp. 325–
333.

[Oht82] Tatsuo Ohtsuki. “Minimum dissection of rectilinear regions.” In: Pro-
ceedings 1982 IEEE Symposium on Circuits and Systems. IEEE. 1982, pp. 1210–
1213.

[Pap94] Christos H. Papadimitriou. Computational Complexit. Addison-Wesley,
1994.

[PST07] Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin. “A Taxon-
omy of Suffix Array Construction Algorithms.” In: ACM Computing
Surveys 39.2 (2007).

[Rät19] Caroline Räther. “Heuristic for Tunneled BWT Block Choice.” Elab-
oration of Project Algorithm Engineering 2018 (draft by Uwe Baier).
2019.

[Res15] The International Genome Sample Resource. The 1000 Genomes Project.
https://www.internationalgenome.org/. Last visited June 2020. 2015.

http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
https://www.internationalgenome.org/

B I B L I O G R A P H Y 201

[RHRH20] Sebastian Reyes Häusler and Valentin Reyes Häusler. “Getunnelte
eXtended Burrows Wheeler Transformation.” Elaboration of Project
Algorithm Engineering 2019 (draft by Uwe Baier). 2020.

[RL79] Jorma J. Rissanen and Glen G. Langdon. “Arithmetic coding.” In: IBM
Journal of Research and Development 23 (1979), pp. 149–162.

[Rya80] B. Ya Ryabko. “Data compression by means of a “book stack”.” In:
Problems of Information Transmission 16 (1980), pp. 265–269.

[SN10] Kunihiko Sadakane and Gonzalo Navarro. “Fully-Functional Succinct
Trees.” In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’10. 2010, pp. 134–149.

[Sew96] Julian Seward. bzip2 file compressor. http://bzip.org/. Last visited
November 2019. 1996.

[Sha48] Claude E. Shannon. “A Mathematical Theory of Communication.” In:
The Bell System Technical Journal 27.3 (1948), pp. 379–423.

[Shi11] Andy Shipsides. HD Formats: Bit Rate vs Bit Depth. https : / / www .
abelcine . com / articles / blog - and - knowledge / tutorials - and -

guides / hd - formats - bit - rate - vs - bit - depth. Last visited June
2020. 2011.

[Sti30] James Stirling. Methodus Differentialis sive Tractatus de Summatione et
Interpolatione Serierum Infinitarum. 1730.

[Sto+15] Lutz Stobbe, Marina Proske, Hannes Zedel, Ralph Hintemann, Jens
Clausen, and Severin Beucker. Entwicklung des IKT-bedingten Strombe-
darfs in Deutschland. Studie im Auftrag des Bundesministeriums für
Wirtschaft und Energie Projekt-Nr. 29/14. Fraunhofer IZM and Border-
step. 2015.

[Vig08] Sebastiano Vigna. “Broadword Implementation of Rank/Select Queries.”
In: Proceedings of the 2008 International Workshop on Experimental and Effi-
cient Algorithms. WEA ’08. 2008, pp. 154–168.

[War13] Henry S. Warren. Hacker’s Delight. 2nd ed. Addison Wesley – Pearson
Education, 2013.

[Web20] Pascal Weber. “Kantenminimierung in DeBruijn Graphen.” Elaboration
of Project Algorithm Engineering 2019 (draft by Uwe Baier). 2020.

http://bzip.org/
https://www.abelcine.com/articles/blog-and-knowledge/tutorials-and-guides/hd-formats-bit-rate-vs-bit-depth
https://www.abelcine.com/articles/blog-and-knowledge/tutorials-and-guides/hd-formats-bit-rate-vs-bit-depth
https://www.abelcine.com/articles/blog-and-knowledge/tutorials-and-guides/hd-formats-bit-rate-vs-bit-depth

202 B I B L I O G R A P H Y

[Wei73] Peter Weiner. “Linear pattern matching algorithms.” In: Proceedings of
the 14th Annual Symposium on Switching and Automata Theory. SWAT ’73.
1973, pp. 1–11.

[WST95] Frans M.J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. “The
context-tree weighting method: basic properties.” In: IEEE Transactions
on Information Theory 41.3 (1995), pp. 653–664.

[Wil64] John William Joseph Williams. “Algorithm 232: Heapsort.” In: Commu-
nications of the ACM 7.6 (1964), pp. 347–349.

[ZL77] Jacob Ziv and Abraham Lempel. “A universal algorithm for sequential
data compression.” In: IEEE Transactions on Information Theory 23.3
(1977), pp. 337–343.

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of individual sequences
via variable-rate coding.” In: IEEE Transactions on Information Theory
24.5 (1978), pp. 530–536.

A
T E S T D A T A D E S C R I P T I O N

The test data used in this thesis comes from 6 different publicly available text corpora,
which are characterized next. More information can be found in Table A.1.

C A N T E R B U RY C O R P U S The Canterbury corpus is the historically oldest corpus
set up in 1997. It contains 11 small-size files ranging between about 4 KB and 1 MB.
The files are a mix of various text documents and binary sources.

L A R G E C A N T E R B U RY C O R P U S The Large Canterbury Corpus is an extension of
the Canterbury Corpus, consisting of 3 files with sizes between 2.3 and 4.4 MB. It can
be seen as a modernization of the Canterbury Corpus, as the computational power
of computer systems and therefore their ability to handle bigger data increased.

S I L E S I A C O R P U S The Silesia Corpus again can be seen as a modernization of
the both corpora from above. It consists of 12 files with about 5–49 MB, and also
contains a few newer data sources such as medical images or database files.

P I Z Z A & C H I L I C O R P U S The Pizza & Chili Corpus is a relatively modern text
corpus. It contains 6 files with e.g. audio data, DNA and protein sequences as well
as source code and English text. The files are big (53–2108 MB) and not repetitive, so
compressing these texts is difficult in terms of good compression rates.

R E P E T I T I V E The Repetitive Corpus contains 9 big files with sizes between 45
and 440 MB. The texts are very repetitive, meaning that they contain a lot of long
repetitions. This allows for good compression for all of these texts.

G E N O M E S Genomes contains full reference genomes of a human (hg38), a mouse
(mm10) and a rat (rn6), collected from the UCSC Genome Browser. The files were
converted from 2-bit-format to FASTA–format and all characters except of A,C,C and
T were removed from the files. The file size range between 2500 and 2900 MB, and
therefore are the biggest data sets used in our experiments.

203

204 T E S T D ATA D E S C R I P T I O N

Text corpus File Size in MB Alphabet size Lines

canterbury1 alice29.txt 0.145 74 3,609

asyoulik.txt 0.119 68 4,123

cp.html 0.023 86 646

fields.c 0.011 90 432

grammar.lsp 0.004 76 95

kennedy.xls 0.982 256 886

lcet10.txt 0.407 84 7,520

plrabn12.txt 0.460 81 10,700

ptt5 0.489 159 1

sum 0.036 255 95

xargs.1 0.004 74 113

largecanterbury2 bible.txt 3.860 63 30,384

E.coli 4.424 4 1

world192.txt 2.359 94 65,120

silesia3 dickens 9.720 100 200,784

mozilla 48.848 256 141,536

mr 9.509 256 118,957

nci 31.999 62 840,552

ooffice 5.867 256 13,278

osdb 9.618 256 29,564

reymont 6.320 256 20,138

samba 20.606 256 595,584

sao 6.916 256 17,031

webster 39.538 98 930,839

xml 5.098 104 57,511

x-ray 8.082 256 362,032

pizzachili4 sources 201.097 230 7,065,007

pitches 53.246 133 84

proteins 1,129.200 27 4,210,908

dna 385.216 16 1,867

english 2,108.000 239 43,894,766

dblp.xml 282.417 97 7,619,950

repetitive5 Escherichia-Coli 107.468 15 1

cere 439.917 5 1

coreutils 195.772 236 6,443,719

einstein.de.txt 88.461 117 545,357

einstein.en.txt 445.963 139 2,379,632

influenza 147.636 15 1

kernel 246.011 160 9,550,967

para 409.380 5 1

world-leaders 44.792 89 103,041

genomes6 hg38 2,908.070 4 1

mm10 2,529.890 4 1

rn6 2,603.400 4 1

1 http://www.data-compression.info/Corpora/CanterburyCorpus/index.html
2 http://www.data-compression.info/Corpora/CanterburyCorpus/index.html
3 http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
4 http://pizzachili.dcc.uchile.cl/texts.html
5 http://pizzachili.dcc.uchile.cl/repcorpus.html
6 http://hgdownload.soe.ucsc.edu/downloads.html

Table A.1: Statistics about the used test data.

http://www.data-compression.info/Corpora/CanterburyCorpus/index.html
http://www.data-compression.info/Corpora/CanterburyCorpus/index.html
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://hgdownload.soe.ucsc.edu/downloads.html

B
D A T A C O M P R E S S I O N B E N C H M A R K R E S U L T S

Experiments related to the data compression chapter were conducted with the aid of
the sdsl-lite-library [Gog07]. The programs were written in C++ and are publicly
available [Bai20]. We used a computer equipped with two 16-core Intel Xeon E5-
2698v3 processors and 256 GB of RAM because some compressors required more
than 16 gigabytes of memory during compression. The computer used Ubuntu
18.04.3 LTS with 64 bit as operating system.

B.1 C O M P R E S S O R B E N C H M A R K

We benchmarked various different lossless data compressors. A list of all compres-
sors can be found in Table B.1. An overview of the used test data can be found in
Chapter A.

Table B.2 shows the compression results. For small and medium-sized files, zpaq
is the method of choice for good compression rates. For larger but not too repetitive
files, bcm-t-greedy achieves the best results. The compressor xz serves best for very
repetitive files.

The Tables B.3 and B.4 show the speed of compression and decompression. Typi-
cally, bw94 is the fastest compressor while xz is the fastest decompressor in almost
all cases.

Finally, Tables B.5 and B.6 list the required memory peak during compression and
decompression. For compression, the smallest memory peak is required by the bw94
and bcm compressors for small files and zpaq for bigger files. For decompression,
xz outperforms all other compressors in terms of memory peak. Some outliers in
Tables B.5 and B.6 exist because in some cases the standard memory required by a
process exceeds the size of the file to be compressed/decompressed.

205

206 D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S

Compressor Description

bw94 Block-sorting compression as described by Burrows and
Wheeler in 1994 [BW94]. Uses the Burrows-Wheeler trans-
form offered by the divsufsort library [Mor03], a self-
implemented move-to-front transform and an entropy
coder from Sachin Garg [Gar06]. The input is processed
block-wise with at most 1.5 GB per block.

bw94-t-hirsch bw94 enhanced with the hirsch tunneling strategy, see Sec-
tion 4.3.1.

bw94-t-greedy bw94 enhanced with the greedy tunneling strategy, see
Section 4.3.2.

bw94-t-gupdate bw94 enhanced with the greedy tunneling strategy that
considers negative side effects, see Section 4.3.2.

bcm One of the best open source BWT compressors to date using
run-length encoding and context mixing, developed by Ilya
Muravyov [Mur16]. The input is processed block-wise with
at most 1.5 GB per block.

bcm-t-hirsch bcm enhanced with the hirsch tunneling strategy, see Sec-
tion 4.3.1.

bcm-t-greedy bcm enhanced with the greedy tunneling strategy, see Sec-
tion 4.3.2.

bcm-t-gupdate bcm enhanced with the greedy tunneling strategy that con-
siders negative side effects, see Section 4.3.2.

xz One of the best LZ77-based compressors to date using the
Lempel-Ziv-Markov Algorithm [Col10].

zpaq One of the best context-mixing compressors to date
[Mah09].

Table B.1: Used compressors in the compression benchmark.

B.1 C O M P R E S S O R B E N C H M A R K 207

File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

alice29.txt 2.354 2.354 2.354 2.354 2.130 2.129 2.129 2.129 2.552 2.032

asyoulik.txt 2.635 2.631 2.630 2.630 2.393 2.388 2.387 2.387 2.849 2.289

cp.html 2.505 2.462 2.462 2.461 2.428 2.361 2.361 2.362 2.488 2.215

fields.c 2.201 2.194 2.191 2.191 2.288 2.268 2.265 2.265 2.175 1.883

grammar.lsp 2.775 2.797 2.797 2.797 2.833 2.850 2.850 2.850 2.777 2.461

kennedy.xls 1.496 1.496 1.496 1.496 0.594 0.594 0.594 0.594 0.402 0.260

lcet10.txt 2.114 2.111 2.111 2.111 1.866 1.861 1.860 1.860 2.239 1.767

plrabn12.txt 2.542 2.541 2.541 2.541 2.235 2.234 2.234 2.234 2.746 2.181

ptt5 0.832 0.832 0.832 0.832 0.704 0.704 0.704 0.704 0.621 0.693

sum 2.779 2.657 2.651 2.654 2.557 2.389 2.377 2.384 1.987 2.186

xargs.1 3.315 3.336 3.336 3.336 3.366 3.382 3.382 3.382 3.429 3.047

bible.txt 1.663 1.660 1.659 1.659 1.440 1.435 1.433 1.434 1.750 1.391

E.coli 2.010 1.990 1.990 1.990 1.939 1.915 1.914 1.915 2.045 1.952

world192.txt 1.438 1.433 1.432 1.432 1.290 1.282 1.280 1.280 1.568 1.269

dickens 2.113 2.108 2.108 2.108 1.761 1.752 1.752 1.752 2.222 1.775

mozilla 2.939 2.913 2.912 2.912 2.495 2.454 2.451 2.452 2.089 2.120

mr 2.083 2.083 2.083 2.083 1.699 1.699 1.699 1.699 2.208 1.795

nci 0.339 0.327 0.327 0.327 0.292 0.276 0.274 0.275 0.345 0.362

ooffice 3.821 3.796 3.795 3.795 3.306 3.271 3.268 3.269 3.156 2.931

osdb 2.250 2.238 2.238 2.238 1.784 1.771 1.771 1.771 2.256 1.886

reymont 1.470 1.469 1.469 1.469 1.186 1.184 1.184 1.184 1.588 1.271

samba 1.805 1.747 1.744 1.747 1.488 1.418 1.413 1.418 1.384 1.196

sao 5.949 5.949 5.949 5.949 5.155 5.155 5.155 5.155 4.882 4.980

webster 1.481 1.479 1.479 1.479 1.239 1.236 1.236 1.236 1.614 1.209

xml 0.664 0.640 0.639 0.641 0.590 0.558 0.556 0.559 0.650 0.530

x-ray 4.244 4.244 4.244 4.244 3.452 3.452 3.452 3.452 4.239 3.560

sources 1.383 1.351 1.348 1.349 1.222 1.175 1.169 1.171 1.184 0.989

pitches 2.838 2.649 2.640 2.647 2.664 2.424 2.409 2.419 1.980 1.963

proteins 2.289 1.972 1.965 1.977 2.331 1.912 1.901 1.920 2.222 2.609

dna 1.829 1.807 1.806 1.807 1.720 1.696 1.696 1.696 1.778 1.859

english 1.711 1.470 1.469 1.471 1.478 1.184 1.183 1.186 1.985 1.683

dblp.xml 0.751 0.745 0.744 0.744 0.628 0.619 0.618 0.618 0.819 0.605

Escherichia-Coli 0.776 0.526 0.516 0.525 0.796 0.519 0.506 0.517 0.368 1.941

cere 0.237 0.120 0.118 0.121 0.238 0.118 0.115 0.119 0.087 1.771

coreutils 0.232 0.148 0.147 0.156 0.229 0.133 0.132 0.144 0.144 0.618

einstein.de.txt 0.015 0.010 0.010 0.010 0.022 0.011 0.010 0.011 0.008 0.007

einstein.en.txt 0.007 0.005 0.005 0.005 0.015 0.007 0.007 0.007 0.005 0.004

influenza 0.120 0.116 0.115 0.115 0.119 0.113 0.112 0.112 0.082 0.351

kernel 0.130 0.069 0.068 0.074 0.136 0.062 0.061 0.069 0.064 0.058

para 0.308 0.173 0.168 0.177 0.315 0.171 0.165 0.176 0.113 1.854

world-leaders 0.121 0.100 0.098 0.100 0.126 0.097 0.094 0.097 0.088 0.093

hg38 1.754 1.723 1.723 1.723 1.645 1.608 1.607 1.608 1.716 1.826

mm10 1.714 1.699 1.699 1.699 1.618 1.598 1.598 1.598 1.669 1.840

rn6 1.787 1.726 1.725 1.726 1.695 1.628 1.628 1.628 1.705 1.819

Table B.2: Compression results in bits per symbol. The best compression result of each file is
printed in bold.

208 D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S

File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch
bc

m
-t

-
gr

ee
dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

alice29.txt 6.90 4.67 2.84 3.53 6.90 3.53 2.37 2.84 1.79 0.48

asyoulik.txt 10.85 3.85 2.91 3.85 5.68 2.91 2.34 2.91 1.47 0.39

cp.html 23.46 2.13 2.13 2.13 23.46 2.13 2.13 2.13 0.75 0.17

fields.c 10.63 0.96 10.63 10.63 10.63 10.63 0.96 0.96 0.96 0.11

grammar.lsp 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 0.06

kennedy.xls 9.72 7.49 6.96 8.11 7.49 8.11 6.09 5.42 0.81 0.74

lcet10.txt 7.98 4.47 3.10 4.02 7.98 3.10 2.38 3.10 1.92 0.63

plrabn12.txt 11.20 4.13 3.04 4.13 7.53 3.04 2.53 3.04 1.98 0.62

ptt5 23.30 11.93 9.59 9.59 8.02 5.37 4.84 4.84 1.22 0.72

sum 3.31 3.31 3.31 3.31 3.31 1.73 1.73 3.31 0.88 0.27

xargs.1 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 0.36 0.05

bible.txt 10.69 5.75 4.53 5.13 6.88 4.33 3.47 4.05 2.22 0.72

E.coli 9.39 5.26 3.00 4.75 6.49 3.74 2.51 3.56 1.31 0.81

world192.txt 11.17 6.91 5.11 5.73 7.34 5.23 3.99 4.36 2.31 0.74

dickens 8.99 5.25 3.66 4.90 5.39 4.24 3.06 3.65 1.62 0.64

mozilla 8.39 4.71 3.10 3.84 6.64 4.06 2.68 3.16 1.97 0.65

mr 9.99 7.30 4.97 7.25 6.59 5.36 4.07 4.24 1.49 0.66

nci 12.94 8.64 7.82 6.17 6.73 5.62 4.90 4.37 1.45 0.84

ooffice 8.13 4.84 3.27 4.27 6.04 4.12 2.96 3.68 2.32 0.57

osdb 9.90 7.28 4.16 7.33 6.53 6.12 4.57 6.16 2.27 0.67

reymont 10.34 6.50 5.17 6.44 6.93 4.82 3.89 4.64 1.71 0.68

samba 9.36 4.87 3.73 2.83 7.00 3.81 3.20 2.82 1.69 0.69

sao 5.85 4.54 2.67 4.45 6.00 3.63 2.16 4.37 2.55 0.60

webster 8.63 5.52 3.96 5.02 5.57 3.71 3.25 3.79 1.44 0.73

xml 15.88 8.07 6.87 6.13 7.71 5.78 5.36 4.63 2.68 0.78

x-ray 7.08 5.49 3.36 5.45 5.80 4.64 3.02 4.58 2.62 0.63

sources 7.70 2.91 2.42 1.78 5.28 2.43 2.16 1.61 1.62 0.73

pitches 8.17 2.65 2.03 1.64 6.19 2.41 1.83 1.52 2.06 0.68

proteins 4.35 1.02 0.93 0.62 3.47 0.98 0.90 0.58 0.93 0.66

dna 4.71 2.65 1.87 2.22 3.67 2.19 1.66 1.91 0.66 0.79

english 4.11 0.75 0.67 0.37 3.39 0.70 0.63 0.37 1.01 0.73

dblp.xml 7.50 5.28 4.39 4.24 4.91 3.98 3.43 3.37 1.58 0.74

Escherichia-Coli 6.79 1.55 1.47 0.14 4.75 1.48 1.43 0.14 0.96 0.81

cere 6.18 2.44 2.38 0.16 4.20 2.30 2.23 0.16 1.08 0.82

coreutils 8.42 2.47 2.36 0.62 5.40 2.38 2.37 0.59 2.84 0.75

einstein.de.txt 8.10 7.18 7.06 6.92 5.23 6.62 6.56 5.54 7.07 0.74

einstein.en.txt 5.98 5.16 5.32 5.06 4.08 4.77 4.60 4.28 7.47 0.76

influenza 7.92 4.89 4.80 3.41 5.02 3.70 3.56 2.88 2.16 0.84

kernel 8.45 3.04 2.97 1.45 5.26 2.98 3.12 1.46 3.28 0.74

para 6.08 2.64 2.52 0.42 4.21 2.57 2.52 0.42 1.05 0.83

world-leaders 19.38 7.13 6.89 3.85 7.74 5.73 4.81 3.27 2.71 0.84

hg38 4.05 2.13 1.52 1.65 3.31 1.81 1.39 1.54 0.64 0.79

mm10 3.98 2.35 1.65 1.85 3.21 1.96 1.46 1.62 0.65 0.80

rn6 4.08 1.74 1.34 1.22 3.29 1.54 1.22 1.15 0.65 0.80

Table B.3: Compression speed in MB per second. The fastest compression of each file is
printed in bold.

B.1 C O M P R E S S O R B E N C H M A R K 209

File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

alice29.txt 3.53 3.53 3.53 3.53 3.53 4.67 3.53 4.67 13.18 0.53

asyoulik.txt 3.85 3.85 3.85 3.85 3.85 5.68 3.85 3.85 119.37 0.41

cp.html 2.13 23.46 23.46 2.13 2.13 23.46 23.46 2.13 23.46 0.21

fields.c 10.63 10.63 10.63 10.63 10.63 0.96 10.63 10.63 10.63 0.11

grammar.lsp 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 0.06

kennedy.xls 4.44 4.65 4.44 4.25 6.09 5.74 5.74 6.09 46.76 0.72

lcet10.txt 5.02 4.02 4.02 4.02 5.02 6.67 4.47 6.67 36.99 0.59

plrabn12.txt 3.50 3.50 3.50 3.50 4.54 4.13 4.13 4.13 21.88 0.62

ptt5 6.89 6.04 6.04 6.04 6.89 8.02 6.04 5.37 44.49 0.70

sum 1.73 3.31 1.73 1.73 3.31 3.31 3.31 3.31 36.46 0.20

xargs.1 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 0.06

bible.txt 7.70 6.88 7.26 7.13 6.75 6.42 6.42 6.42 47.65 0.61

E.coli 10.03 9.59 9.59 9.80 7.12 5.26 5.89 5.97 48.61 0.81

world192.txt 6.72 6.19 6.72 7.83 6.53 6.35 6.19 6.53 46.25 0.69

dickens 4.90 4.45 3.93 4.47 5.58 5.08 5.51 5.08 53.70 0.70

mozilla 2.84 2.73 2.82 2.79 5.80 4.96 5.25 5.06 49.29 0.65

mr 3.80 3.18 3.23 3.40 7.09 5.33 5.33 5.22 36.43 0.76

nci 10.45 7.78 7.82 8.01 5.52 5.35 5.46 5.54 151.65 0.82

ooffice 2.27 2.33 2.35 2.35 5.69 5.52 6.04 5.42 25.39 0.62

osdb 3.57 3.95 3.69 3.89 6.00 7.62 6.72 7.45 41.63 0.63

reymont 3.45 3.45 3.43 3.19 6.57 6.50 6.44 6.57 52.23 0.75

samba 3.93 4.23 4.21 4.19 6.79 7.33 7.68 7.57 68.45 0.73

sao 1.99 2.03 2.02 1.98 4.93 5.04 4.11 4.66 20.89 0.58

webster 5.45 4.60 4.42 4.54 5.15 4.78 4.64 4.67 77.37 0.71

xml 11.30 11.82 11.55 11.55 8.34 9.60 9.78 9.08 83.56 0.75

x-ray 2.47 2.26 2.44 2.44 5.93 5.68 5.72 5.72 23.02 0.63

sources 3.63 3.44 3.45 3.25 5.88 5.38 5.59 5.47 96.17 0.71

pitches 3.61 4.04 4.18 3.78 6.06 5.70 5.70 5.93 51.64 0.70

proteins 6.00 4.92 4.95 4.73 4.45 4.15 4.19 4.07 54.49 0.65

dna 5.45 4.18 4.19 4.11 4.42 3.38 3.28 3.29 78.27 0.79

english 2.35 2.39 2.30 2.29 4.34 3.61 3.63 3.46 75.93 0.70

dblp.xml 8.09 6.15 6.62 6.40 6.15 5.43 5.52 5.40 109.84 0.71

Escherichia-Coli 6.93 6.40 6.80 6.48 4.93 6.00 5.72 5.84 206.27 0.77

cere 7.42 6.91 6.98 6.99 4.93 6.26 6.55 6.03 382.20 0.80

coreutils 6.34 12.30 13.48 9.44 5.52 13.85 14.89 9.75 305.41 0.70

einstein.de.txt 15.65 18.12 19.78 18.08 6.84 14.84 16.34 13.42 352.43 0.76

einstein.en.txt 14.20 12.29 12.69 12.62 6.53 9.36 9.48 8.70 484.21 0.72

influenza 11.88 7.67 7.76 7.67 6.01 4.82 4.71 4.88 278.03 0.80

kernel 6.70 18.83 16.77 12.99 4.88 20.03 19.53 13.30 383.79 0.75

para 7.46 6.61 6.89 6.37 4.76 6.08 6.16 5.99 343.72 0.80

world-leaders 9.90 8.90 10.06 8.49 5.74 6.99 7.61 6.22 247.47 0.81

hg38 5.85 3.85 3.65 3.72 4.41 2.76 2.84 2.97 78.99 0.76

mm10 5.89 3.97 3.80 3.95 4.30 3.06 3.04 3.03 86.31 0.81

rn6 5.96 3.89 3.59 3.82 4.43 3.04 3.08 3.12 82.75 0.79

Table B.4: Decompression speed in MB per second. The fastest decompression of each file is
printed in bold.

210 D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S

File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

alice29.txt 236.35 268.66 278.36 302.92 239.79 279.65 287.19 301.20 1624.94 5040.30

asyoulik.txt 278.78 330.61 347.62 348.93 270.93 338.99 349.98 365.95 1903.58 6064.66

cp.html 1303.90 1342.52 1385.14 1390.47 1329.20 1415.77 1426.43 1442.41 7202.75 29654.08

fields.c 2850.66 2953.52 2944.71 2968.22 2991.73 3035.81 3050.50 3068.14 8070.03 47041.91

grammar.lsp 8260.24 8806.23 9035.19 8682.94 8709.36 8999.97 9184.90 8991.16 15622.26 89400.89

kennedy.xls 70.86 71.34 69.72 87.95 70.54 70.86 71.78 90.97 277.10 765.40

lcet10.txt 109.49 129.99 137.59 155.87 110.10 129.53 135.37 154.79 823.66 1833.14

plrabn12.txt 100.64 136.14 144.84 160.35 102.20 139.67 147.09 167.49 633.10 1591.95

ptt5 101.90 99.73 101.77 101.19 98.96 100.56 100.30 102.34 731.19 1533.06

sum 874.04 905.74 905.74 903.17 840.62 904.03 931.45 944.30 5760.96 20319.75

xargs.1 7217.17 7504.00 8000.13 7767.57 7612.53 7945.87 7961.37 8031.14 17302.62 99784.64

bible.txt 47.30 58.17 64.15 85.95 47.61 58.43 64.16 86.61 144.15 196.78

E.coli 46.45 106.91 120.38 144.65 46.74 107.27 120.54 144.70 77.45 63.69

world192.txt 51.94 53.04 57.04 78.00 52.51 52.67 57.05 78.27 265.94 324.32

dickens 43.12 67.06 75.79 100.21 43.07 67.37 75.78 100.24 116.62 84.59

mozilla 40.58 58.11 66.82 93.02 40.62 58.12 66.82 93.03 82.96 17.96

mr 43.22 55.70 62.97 86.25 42.89 55.71 62.88 86.28 122.31 86.36

nci 40.90 40.96 40.92 41.03 40.91 40.96 40.93 41.04 77.09 26.59

ooffice 44.78 80.75 91.47 114.89 44.88 81.15 91.35 115.32 163.38 135.74

osdb 42.82 52.23 58.95 82.24 42.89 52.29 59.10 82.54 127.51 85.92

reymont 44.61 50.73 56.11 78.16 44.90 50.91 56.45 78.51 153.72 126.42

samba 41.40 41.41 45.82 69.94 41.42 41.42 45.96 69.94 97.99 42.59

sao 43.96 110.04 127.09 152.01 44.09 110.36 127.25 151.77 149.20 116.18

webster 40.73 47.17 53.29 78.53 40.73 47.18 53.28 78.51 84.78 22.16

xml 45.56 45.78 45.48 50.12 45.62 45.45 45.57 50.46 170.19 154.93

x-ray 43.53 84.42 97.07 121.80 43.60 84.61 97.15 121.69 138.23 100.80

sources 40.14 40.14 43.12 70.20 40.14 40.14 43.12 70.20 26.87 4.36

pitches 40.56 63.78 72.74 99.23 40.54 63.80 72.75 99.23 82.06 16.44

proteins 40.02 57.16 66.61 97.25 40.02 57.16 66.61 97.25 4.46 0.74

dna 40.07 87.20 102.11 131.99 40.07 87.20 102.11 131.99 12.74 1.70

english 37.96 45.08 51.82 81.17 37.96 45.08 51.82 81.17 2.56 0.41

dblp.xml 40.10 40.10 40.10 56.19 40.10 40.10 40.10 56.18 19.13 3.10

Escherichia-Coli 40.26 40.26 40.26 53.38 40.27 40.26 40.26 53.36 45.68 6.17

cere 40.06 40.06 40.06 40.06 40.06 40.06 40.06 40.06 11.12 1.05

coreutils 40.14 40.14 40.14 40.14 40.14 40.14 40.14 40.14 27.60 4.47

einstein.de.txt 40.32 40.33 40.32 40.32 40.32 40.32 40.32 40.33 58.52 9.91

einstein.en.txt 40.06 40.06 40.06 40.06 40.06 40.06 40.06 40.06 11.94 1.96

influenza 40.19 40.18 40.19 40.19 40.18 40.18 40.18 40.19 33.21 4.39

kernel 40.11 40.11 40.11 40.11 40.11 40.11 40.11 40.11 21.95 3.56

para 40.07 40.07 40.07 40.07 40.07 40.07 40.07 40.07 11.95 1.18

world-leaders 40.66 40.69 40.66 40.69 40.67 40.65 40.65 40.67 82.26 19.46

hg38 27.51 57.87 68.95 91.11 27.51 57.87 68.95 91.11 1.68 0.12

mm10 31.63 67.06 79.95 105.43 31.63 67.06 79.95 105.43 1.93 0.14

rn6 30.74 65.42 77.88 102.65 30.74 65.42 77.88 102.65 1.87 0.14

Table B.5: Compression memory peak in bits per symbol. The compression with the lowest
memory peak is printed in bold.

B.1 C O M P R E S S O R B E N C H M A R K 211

File bw
94

bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bc
m

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

xz zp
aq

alice29.txt 223.20 217.17 217.17 219.11 222.99 241.52 239.58 233.55 173.43 5019.18

asyoulik.txt 257.31 267.00 271.19 273.28 280.35 270.66 276.42 272.76 207.84 6055.24

cp.html 1309.22 1313.22 1311.89 1267.94 1351.84 1322.54 1341.19 1375.82 1060.16 29540.87

fields.c 2841.85 2830.09 2809.52 2824.21 2962.34 2938.83 2882.99 2906.50 2392.21 46836.19

grammar.lsp 8383.53 8154.57 8330.69 8436.37 8594.88 8762.20 8506.82 8630.11 7221.11 88388.17

kennedy.xls 66.85 69.24 68.60 68.28 69.27 70.16 71.31 70.23 27.52 764.76

lcet10.txt 105.42 104.42 106.19 106.42 108.57 109.26 110.79 109.49 64.03 1823.93

plrabn12.txt 96.97 101.52 101.39 102.20 100.57 102.48 100.91 99.96 56.71 1588.68

ptt5 95.32 96.15 94.87 96.79 95.64 99.09 102.09 100.36 53.18 1529.99

sum 810.63 884.32 835.48 841.47 876.61 868.04 860.33 868.90 712.94 20288.05

xargs.1 7170.66 7286.94 7519.50 7379.97 7651.29 7612.53 7798.58 7550.51 6503.98 99521.07

bible.txt 46.81 48.34 48.32 48.33 47.45 49.04 49.02 48.95 12.88 196.11

E.coli 45.93 47.16 47.26 47.18 45.82 47.45 47.70 47.45 12.17 63.26

world192.txt 51.09 51.31 50.19 50.36 51.46 51.07 51.37 50.99 16.03 323.57

dickens 42.94 44.08 44.07 44.00 42.85 44.18 44.19 44.20 10.00 84.46

mozilla 40.55 39.97 39.62 39.95 40.55 39.98 39.66 40.00 8.39 17.91

mr 42.86 44.80 44.82 44.86 42.85 44.94 44.95 44.89 10.05 86.23

nci 40.85 37.25 36.55 36.98 40.83 37.28 36.61 37.01 8.59 26.55

ooffice 44.45 44.81 44.90 44.86 44.44 45.08 44.95 45.03 11.12 135.25

osdb 42.80 31.83 31.89 31.79 42.80 31.96 31.79 32.06 9.92 85.63

reymont 44.37 45.36 45.15 45.00 44.26 45.47 45.27 45.20 11.00 126.19

samba 41.29 34.69 34.04 34.94 41.28 34.77 34.13 34.99 8.90 42.46

sao 43.83 45.90 45.83 45.74 44.02 46.12 46.05 46.13 10.64 115.97

webster 40.66 42.06 42.05 42.06 40.67 42.07 42.11 42.06 8.48 22.11

xml 45.07 34.10 33.12 35.36 45.67 34.66 33.32 35.40 11.58 154.41

x-ray 43.28 45.38 45.33 45.23 43.37 45.46 45.62 45.51 10.34 100.44

sources 40.12 36.50 35.65 36.08 40.13 36.51 35.65 36.06 2.63 4.35

pitches 40.49 32.48 31.78 32.35 40.50 32.52 31.82 32.35 8.35 16.42

proteins 40.02 27.66 27.23 27.90 40.02 27.66 27.23 27.90 0.47 0.74

dna 40.06 41.39 41.38 41.38 40.07 41.40 41.38 41.38 1.37 1.70

english 37.96 27.87 27.82 27.94 37.96 27.87 27.82 27.94 0.25 0.41

dblp.xml 40.09 33.48 32.96 33.86 40.09 33.49 32.96 33.87 1.87 3.09

Escherichia-Coli 40.24 13.36 12.52 13.23 40.26 13.36 12.56 13.23 4.94 6.15

cere 40.06 8.24 7.85 8.43 40.06 8.25 7.86 8.43 1.20 1.04

coreutils 40.13 6.18 5.82 10.93 40.13 6.18 5.83 10.95 2.70 4.47

einstein.de.txt 40.29 8.01 6.94 10.41 40.31 8.02 6.97 10.41 6.00 9.88

einstein.en.txt 40.05 12.62 11.64 14.53 40.06 12.62 11.64 14.54 1.19 1.96

influenza 40.17 38.38 37.55 37.92 40.18 38.39 37.56 37.92 3.59 4.38

kernel 40.10 2.21 2.12 3.75 40.11 2.21 2.12 3.75 2.15 3.55

para 40.06 8.14 7.53 8.47 40.06 8.14 7.54 8.48 1.29 1.17

world-leaders 40.58 21.84 19.97 23.32 40.59 21.87 19.99 23.32 8.43 19.43

hg38 27.51 28.38 28.36 28.37 27.51 28.38 28.36 28.37 0.18 0.12

mm10 31.63 32.70 32.66 32.70 31.63 32.70 32.66 32.70 0.20 0.14

rn6 30.73 30.76 30.74 30.76 30.73 30.76 30.73 30.76 0.20 0.14

Table B.6: Decompression memory peak in bits per symbol. The decompression with the
lowest memory peak is printed in bold.

212 D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S

B.2 T U N N E L I N G I M PA C T

To measure the impact of tunneling, we added some additional experiments. In the
first experiment, we compared the compression rates of normal and tunnel-enhanced
BWT compressors. The results can be found in Table B.7. The table shows that the
greedy and hirsch tunnel strategies reduce the encoding size by the biggest amount.
Both tunneling strategies reduce the encoding sizes in almost all cases.

Table B.7 shows that the greedy update strategy does not work that good, so it
seems like positive and negative side effects between prefix intervals balance each
other out. Moreover, we included another tunnel strategy using edge reduction in
de Bruijn graphs as shown in Section 5.2. The strategy uses the same BWT post
stages, but increases the encoding size in many cases. This shows that the edge
minimization approach is not suitable for data compression. However, the approach
has a big impact in the field of sequence analysis, which is shown in the next chapter.

The Figures B.1 and B.2 show the potential of tunneling and the optimality of
the greedy and hirsch tunnel strategies using the post stages of the bw94 and bcm
compressors. Albeit hirsch and greedy do choose less than the optimal amount of
prefix intervals to be tunneled, the choice is good enough to reduce the encoding
size by almost the optimum. The “conservative behavior” of the strategies is owed to
the conservative cost model used to determine the best prefix intervals, see Section
4.2.2. Another cost model might improve the benefits of both strategies. However,
the used cost model results in a benefit which is very close to the optimum, so the
cost model is “good enough” to work well in practice.

Differences between Table B.7 and Figures B.1 and B.2 can be explained by the
different methods used. Table B.7 uses the full test files and compares the full
encodings. The Figures B.1 and B.2 instead use at most 1 GB prefixes of each test
file to reduce the computational amount of the benchmark. Moreover, Figures B.1
and B.2 measure only the size of the encoded components L and aux and ignore
additional fields such as original test file length or the BWT index.

In summary, the greedy tunnel strategy achieves the biggest benefits. The most
resource-saving strategy is the hirsch strategy. Because the differences are subtle,
our BWT compressor of choice is bcm with the hirsch tunneling strategy.

B.2 T U N N E L I N G I M PA C T 213

File bw
94

-t
-

hi
rs

ch

bw
94

-t
-

gr
ee

dy

bw
94

-t
-

gu
pd

at
e

bw
94

-t
-

de
br

ui
jn

bc
m

-t
-

hi
rs

ch

bc
m

-t
-

gr
ee

dy

bc
m

-t
-

gu
pd

at
e

bc
m

-t
-

de
br

ui
jn

alice29.txt 0.00% 0.00% 0.00% −18.99% 0.05% 0.05% 0.05% −17.75%

asyoulik.txt 0.15% 0.19% 0.19% −14.42% 0.21% 0.25% 0.25% −13.62%

cp.html 1.72% 1.72% 1.76% −10.10% 2.76% 2.76% 2.72% −7.37%

fields.c 0.32% 0.46% 0.46% −22.13% 0.87% 1.01% 1.01% −16.57%

grammar.lsp −0.79% −0.79% −0.79% −15.32% −0.60% −0.60% −0.60% −9.74%

kennedy.xls 0.00% 0.00% 0.00% −78.74% 0.00% 0.00% 0.00% −92.76%

lcet10.txt 0.14% 0.14% 0.14% −20.72% 0.27% 0.32% 0.32% −20.31%

plrabn12.txt 0.04% 0.04% 0.04% −15.97% 0.04% 0.04% 0.04% −15.93%

ptt5 0.00% 0.00% 0.00% −478.37% 0.00% 0.00% 0.00% −532.81%

sum 4.39% 4.61% 4.50% −32.74% 6.57% 7.04% 6.77% −33.71%

xargs.1 −0.63% −0.63% −0.63% −13.73% −0.48% −0.48% −0.48% −9.42%

bible.txt 0.18% 0.24% 0.24% −26.70% 0.35% 0.49% 0.42% −27.22%

E.coli 1.00% 1.00% 1.00% −17.01% 1.24% 1.29% 1.24% −13.25%

world192.txt 0.35% 0.42% 0.42% −18.57% 0.62% 0.78% 0.78% −18.22%

dickens 0.24% 0.24% 0.24% −19.02% 0.51% 0.51% 0.51% −19.48%

mozilla 0.89% 0.92% 0.92% −33.55% 1.64% 1.76% 1.72% −35.99%

mr 0.00% 0.00% 0.00% −129.24% 0.00% 0.00% 0.00% −133.25%

nci 3.54% 3.54% 3.54% −22.42% 5.48% 6.17% 5.82% −22.60%

ooffice 0.65% 0.68% 0.68% −14.81% 1.06% 1.15% 1.12% −16.36%

osdb 0.53% 0.53% 0.53% −4.89% 0.73% 0.73% 0.73% −6.67%

reymont 0.07% 0.07% 0.07% −14.56% 0.17% 0.17% 0.17% −16.10%

samba 3.21% 3.38% 3.21% −16.62% 4.71% 5.04% 4.71% −16.73%

sao 0.00% 0.00% 0.00% −0.99% 0.00% 0.00% 0.00% −0.99%

webster 0.14% 0.14% 0.14% −18.64% 0.24% 0.24% 0.24% −18.89%

xml 3.61% 3.76% 3.46% −14.16% 5.42% 5.76% 5.26% −12.54%

x-ray 0.00% 0.00% 0.00% −10.23% 0.00% 0.00% 0.00% −10.26%

sources 2.31% 2.53% 2.46% −18.73% 3.85% 4.34% 4.17% −17.02%

pitches 6.66% 6.98% 6.73% 1.69% 9.01% 9.57% 9.20% 3.98%

proteins 13.85% 14.15% 13.63% 8.69% 17.98% 18.45% 17.63% 12.53%

dna 1.20% 1.26% 1.20% −14.93% 1.39% 1.39% 1.39% −12.21%

english 14.09% 14.14% 14.03% 10.75% 19.89% 19.96% 19.76% 16.51%

dblp.xml 0.80% 0.93% 0.93% −14.25% 1.43% 1.59% 1.59% −14.33%

Escherichia-Coli 32.22% 33.51% 32.35% 23.58% 34.80% 36.43% 35.05% 27.64%

cere 49.37% 50.21% 48.95% 43.88% 50.42% 51.68% 50.00% 45.80%

coreutils 36.21% 36.64% 32.76% 18.54% 41.92% 42.36% 37.12% 24.02%

einstein.de.txt 33.33% 33.33% 33.33% 20.00% 50.00% 54.55% 50.00% 45.46%

einstein.en.txt 28.57% 28.57% 28.57% 14.29% 53.33% 53.33% 53.33% 60.00%

influenza 3.33% 4.17% 4.17% −46.67% 5.04% 5.88% 5.88% −42.86%

kernel 46.92% 47.69% 43.08% 40.77% 54.41% 55.15% 49.26% 47.79%

para 43.83% 45.45% 42.53% 29.55% 45.71% 47.62% 44.13% 32.06%

world-leaders 17.36% 19.01% 17.36% −4.13% 23.02% 25.40% 23.02% 3.18%

hg38 1.77% 1.77% 1.77% −0.23% 2.25% 2.31% 2.25% 0.67%

mm10 0.88% 0.88% 0.88% −1.52% 1.24% 1.24% 1.24% −0.87%

rn6 3.41% 3.47% 3.41% 1.01% 3.95% 3.95% 3.95% 1.89%

Table B.7: Tunneling compression improvements in percentage. The numbers show the
encoding size differences between the normal and the enhanced BWT compressor
relative to the encoding size of the normal BWT compressor. A positive number
indicates an improvement, a negative number indicates a deterioration.

214 D ATA C O M P R E S S I O N B E N C H M A R K R E S U LT S

9

83

146

27

0

0

191

54

0

629

0

1951

11403

1936

7064

183647

49

53846

21094

14686

1123

169166

0

8874

17114

4

953151

1428811

44482535

1153283

24595608

282417

3753797

7013452

2190610

66149

121610

93664

2002658

7674004

143887

1895848

1326205

8643750

be
st

en
co

di
ng

si
ze

de
cr

ea
se

in
by

te
s

0 % 20 % 40 % 60 % 80 % 100 %

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

amount of rating-sorted tunneled prefix intervals

best compression worst compression

7 byte

68 byte

144 byte

22 byte

0 byte

0 byte

144 byte

52 byte

0 byte

594 byte

0 byte

1,554 byte

11,373 byte

1,632 byte

6,970 byte

167,865 byte

32 byte

50,393 byte

19,519 byte

14,389 byte

1,017 byte

156,695 byte

0 byte

8,720 byte

15,864 byte

0 byte

844,342 byte

1,320,470 byte

42,045,184 byte

1,142,418 byte

24,506,155 byte

234,533 byte

3,520,515 byte

6,726,776 byte

2,153,905 byte

62,566 byte

116,934 byte

84,713 byte

1,991,455 byte

7,261,837 byte

125,223 byte

1,862,936 byte

1,289,918 byte

8,604,289 byte

8 byte

78 byte

143 byte

25 byte

0 byte

0 byte

178 byte

52 byte

0 byte

623 byte

0 byte

1,881 byte

11,423 byte

1,836 byte

7,055 byte

178,176 byte

32 byte

53,167 byte

20,561 byte

14,408 byte

1,080 byte

165,309 byte

0 byte

8,794 byte

16,748 byte

0 byte

919,578 byte

1,382,217 byte

43,057,811 byte

1,149,555 byte

24,561,146 byte

263,241 byte

3,670,840 byte

6,886,541 byte

2,177,387 byte

65,152 byte

119,914 byte

92,006 byte

1,998,434 byte

7,528,609 byte

136,342 byte

1,888,493 byte

1,311,294 byte

8,635,551 byte

Figure B.1: Optimality of the hirsch and greedy strategy with the bw94 post stages. The
amount of tunneled prefix intervals using the hirsch strategy is indicated with
blue pluses. The amount of tunneled prefix intervals using the greedy strategy is
indicated with green crosses. The best encoding size decrease compared to an
compression without tunneling is shown on the right. The encoding size decrease
of the hirsch and greedy strategy is shown right beside the pluses/crosses. The
benchmark uses up to at most 1 GB of the prefix of a test file to reduce the
computational amount.

B.2 T U N N E L I N G I M PA C T 215

62

117

257

85

16

0

490

86

0

902

15

4646

14257

4034

11805

307960

0

76487

33531

16960

2259

212853

876

15121

24712

0

1636276

1897068

59491933

1264928

30712009

444237

4191382

7264036

2539241

143165

494388

158624

2415128

8177501

199639

2450106

1875504

9425977

be
st

en
co

di
ng

si
ze

de
cr

ea
se

in
by

te
s

0 % 20 % 40 % 60 % 80 % 100 %

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

amount of rating-sorted tunneled prefix intervals

best compression worst compression

29 byte

86 byte

216 byte

36 byte

0 byte

0 byte

239 byte

73 byte

0 byte

808 byte

0 byte

2,547 byte

14,061 byte

2,601 byte

10,908 byte

261,318 byte

−34 byte

68,905 byte

26,941 byte

16,568 byte

1,889 byte

187,217 byte

0 byte

12,635 byte

21,232 byte

0 byte

1,246,534 byte

1,674,525 byte

55,561,231 byte

1,215,394 byte

30,390,427 byte

302,925 byte

3,903,192 byte

6,934,528 byte

2,472,843 byte

136,199 byte

466,489 byte

119,539 byte

2,392,523 byte

7,709,718 byte

171,124 byte

2,292,908 byte

1,683,146 byte

9,239,916 byte

30 byte

95 byte

217 byte

40 byte

0 byte

0 byte

314 byte

73 byte

0 byte

866 byte

0 byte

3,501 byte

14,171 byte

3,100 byte

11,142 byte

283,266 byte

−34 byte

73,729 byte

29,332 byte

16,590 byte

2,004 byte

201,067 byte

0 byte

12,796 byte

22,874 byte

0 byte

1,411,600 byte

1,777,106 byte

57,136,707 byte

1,232,215 byte

30,516,153 byte

354,155 byte

4,087,333 byte

7,117,608 byte

2,510,615 byte

141,003 byte

481,054 byte

137,299 byte

2,404,637 byte

8,019,014 byte

188,203 byte

2,355,562 byte

1,739,097 byte

9,317,300 byte

Figure B.2: Optimality of the hirsch and greedy strategy with the bcm post stages. The
amount of tunneled prefix intervals using the hirsch strategy is indicated with
blue pluses. The amount of tunneled prefix intervals using the greedy strategy is
indicated with green crosses. The best encoding size decrease compared to an
compression without tunneling is shown on the right. The encoding size decrease
of the hirsch and greedy strategy is shown right beside the pluses/crosses. The
benchmark uses up to at most 1 GB of the prefix of a test file to reduce the
computational amount.

C
S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U L T S

Experiments related to the sequence analysis chapter 5 were conducted with the
support of the sdsl-lite-library [Gog07]. The programs were written in C++ and
are publicly available [Bai20]. Because the experiments are very space- and time-
consuming, we used a high performance computer equipped with two 16-core Intel
Xeon E5-2698v3 processors and 256 GB of RAM. The computer used Ubuntu 18.04.3
LTS with 64 bit as operating system. We removed all nullbytes from the test data
because of technical reasons in combination with the sdsl-lite-library.

C.1 D E B R U I J N G R A P H E D G E R E D U C T I O N

We implemented the algorithms presented in Sections 5.1 and 5.2. As a result, we
obtain a construction algorithm for a tunneled FM-index by means of de Bruijn
graph edge minimization.

Figure C.1 shows the dependence between the graph order k and the number of
reduced edges. For most of the test data, the best order k∗ lies between 5 and 41, only
very repetitive files have a higher best order.

The number of reduced edges using the best order k∗ can be found in Figure C.2.
The figure furthermore shows the size of the tunneled FM-index compared to the
normal one. The best results were achieved on repetitive data, the worst on very
small files or non-repetitive DNA sequences.

The edge minimization algorithm on Page 5.5 typically requires the same time
as FM-index construction, as can be seen on Figure C.3. The algorithm runs faster
on repetitive files which is not surprising in a sense as the computationally intense
steps have an output-sensitive worst-case time, see Corollary 5.9. The memory peaks
during construction typically are 5n bytes for files with less than 2 GB and 9n bytes
for files with more than 2 GB, see Figure C.4. This corresponds to the memory peak of
suffix array construction using divsufsort [Mor03]. For cases in which the program
requires more than 9n bytes the input size is so small that the memory overhead of
the running process matters.

217

218 S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S

10 20 30 40 50 60 70 80 90 100

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

order k

least
edges

most
edges

Figure C.1: Dependence between the order k and the number of edges in an edge-reduced
de Bruijn graph for all files from the test data set. A similar image was already
published in the full version of [Bai+20] © 2020 IEEE.

C.1 D E B R U I J N G R A P H E D G E R E D U C T I O N 219

8

6

6

7

8

4

8

7

5

10

5

12

12

12

11

12

6

41

8

5

9

13

5

13

19

4

17

17

25

16

28

22

18

24

56

270

613

123

98

36

210

32

36

32

be
st

or
de

r
k∗

20% 40% 60% 80% 100% 120% 140% 160%

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

percentage of original DBG edges respectively original FM-index size

edge count in minimal DBG tunneled FM-index size

Figure C.2: Amount of reduced edges for minimal edge-reduced de Bruijn graphs as well as
size of corresponding tunneled FM index compared to a normal FM-index. The
overhead between the amount of reduced edges and the tunneled FM-index size
comes from the two additional bit-vectors required in the tunneled FM index. A
similar image was already published in the full version of [Bai+20] © 2020 IEEE.

220 S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S

0.099

0.077

0.029

0.027

0.023

0.186

0.2

0.246

0.058

0.034

0.023

1.376

1.829

0.935

4.25

20.708

2.496

7.63

2.797

3.024

2.672

8.438

4.196

17.385

1.151

3.237

102.764

27.985

661.196

227.895

1447.016

109.865

32.914

137.776

60

18.509

123.63

59.807

61.731

129.422

9.752

1807.061

1574.604

1571.514

to
ta

lt
im

e
in

se
co

nd
s

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

percentage of construction time

FM index DBG edge minimization tunneled FM-index

Figure C.3: Construction timings of tunneled FM-index construction broken down into FM-
index construction, de Bruijn graph edge minimization and tunneled FM-index
construction. The idea of this image comes from a student project [Web20].

C.1 D E B R U I J N G R A P H E D G E R E D U C T I O N 221

2.052

1.184

1.049

1.014

1.005

2.734

2.035

2.298

1.121

1.056

1.006

19.299

22.119

11.794

48.601

180.411

20.845

159.995

25.681

44.897

31.6

97.787

34.317

197.691

25.388

40.316

1005.49

266.222

5645.999

1926.078

18971.977

1412.086

537.346

2199.586

978.86

442.307

2229.817

738.185

1230.057

2046.899

223.962

26172.488

22769.024

23430.588

m
em

or
y

pe
ak

in
M

B

1 2 3 4 5 6 7 8 9 10

alice29.txt

asyoulik.txt

cp.html

fields.c

grammar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5

sum

xargs.1

bible.txt

E.coli

world192.txt

dickens

mozilla

mr

nci

ooffice

osdb

reymont

samba

sao

webster

xml

x-ray

sources

pitches

proteins

dna

english

dblp.xml

Escherichia-Coli

cere

coreutils

einstein.de.txt

einstein.en.txt

influenza

kernel

para

world-leaders

hg38

mm10

rn6

memory peak in bytes per input symbol

FM index DBG edge minimization tunneled FM-index

Figure C.4: Memory peak during tunneled FM index construction, measured in bytes per
symbol of the input data. The idea of this image comes from a student project
[Web20].

222 S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S

C.2 T R I E R E S U LT S

This section presents results related to tries and trie tunneling, as described in the
Sections 5.3 and 5.4. The test input comes from the data described in Chapter A.
For each file, we removed all lines containing nullbytes and lines with less than 10
characters. To ensure correctness of the Aho-Corasick algorithm (see Algorithm 5.6),
we also removed lines that contain any other line as a proper substring.

The test input now consists of all files listed in Chapter A which, after being
modified as described above, have a size bigger than 1 MB and contain at least 1000
lines. The lines of each such file are used as input strings for trie construction. Both
filter methods ensure a certain branching degree and size of the final trie. Table C.1
shows statistics about the prepared test data files.

File Size in MB Number of strings

bible.txt 3.841 30,105

world192.txt 1.826 32,650

dickens 9.345 157,038

mozilla 1.387 21,579

nci 10.594 178,289

reymont 6.103 6,058

samba 10.274 247,372

webster 30.598 491,661

xml 2.375 26,657

x-ray 3.199 23,172

sources 104.845 2,507,311

proteins 651.355 2,265,632

dna 383.493 1,864

english 988.750 16,709,728

dblp.xml 164.885 2,949,908

coreutils 10.746 230,982

einstein.en.txt 1.958 5,298

kernel 5.983 154,025

world-leaders 6.144 5,276

Table C.1: Statistics about the trie test data used for experiments. The files were generated as
follows: first, all lines containing nullbytes or containing less than 10 characters
were removed from the original file. Next, lines containing any other line as
proper substring were removed. Resulting files with less than 1 MB or less than
1000 lines were filtered out. The lines of the resulting remaining files then were
used as input strings for trie construction.

C.2 T R I E R E S U LT S 223

3.841

1.826

9.345

1.387

10.594

6.103

10.274

30.598

2.375

3.199

104.845

651.355

383.493

988.753

164.885

10.746

1.958

5.983

6.144

in
pu

ts
iz

e
in

M
B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

bible.txt

world192.txt

dickens

mozilla

nci

reymont

samba

webster

xml

x-ray

sources

proteins

dna

english

dblp.xml

coreutils

einstein.en.txt

kernel

world-leaders

trie size in bytes per input symbol

XBWT representation Tunneled XBWT representation

Figure C.5: Size of trie representations relative to the size of the sum of lengths of all input
strings. A similar image already appeared in a student project [RHRH20].

The size of tunneled and normal tries using the XBWT representation can be
found in Figure C.5. The size of a normal XBWT relative to the input length varies
depending on the number of nodes in the trie. The tunneled variants offer compres-
sion about 10 % on average. Note that for some inputs like e.g. dna, the tunneled
XBWT is bigger than the normal XBWT. This is in accordance with sizes of tunneled
FM-indices (see Figure C.2): a tunneled BWT needs the additional component Din

which sometimes is bigger than the gain of tunneling. Again, best compression can
be achieved on repetitive inputs.

Construction timings of the trie representations are shown in Figure C.6. This
shows that the use of succinct counters in the algorithms (see Remark 5.14) has almost
no influence on the run-time. The algorithms XBWT fast and XBWT lightweight
come from [OSB18], algorithm XBWT fast also is described in Section 5.3. The

224 S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S

489

253

1314

234

1059

822

1257

4422

305

460

18555

205082

111947

299812

28277

1291

258

729

666

ti
m

e
fo

r
FM

-i
nd

ex
co

ns
tr

uc
ti

on
in

se
co

nd
s

100% 200% 300% 400% 500% 600% 700% 800%

bible.txt

world192.txt

dickens

mozilla

nci

reymont

samba

webster

xml

x-ray

sources

proteins

dna

english

dblp.xml

coreutils

einstein.en.txt

kernel

world-leaders

complete trie construction time relative to FM-index construction time

XBWT fast XBWT lightweight Tunneled XBWT

XBWT fast SC XBWT lightweight SC Tunneled XBWT SC

Figure C.6: Trie construction timings of different algorithms relative to FM-index construc-
tion. Algorithm variants using a succinct counter instead of a normal counter
are indicated by the same color and a north west line pattern. Similar results on
other test files already were presented in [OSB18] and [RHRH20].

tunneled XBWT construction algorithm has been described in Section 5.4 and is an
extension of the XBWT fast algorithm.

Algorithm XBWT fast turns out to be the fastest construction algorithm under
consideration. The lightweight XBWT construction algorithm requires roughly about
twice as much time as the fast algorithm. This is owed to the double inspection of all
nodes of the final trie, see [OSB18] for details. The TXBWT construction algorithm
also requires roughly about twice the time of the fast algorithm. The reason is that
the used de Bruijn graph edge minimization algorithm works very similar to a node
inspection of the trie.

C.2 T R I E R E S U LT S 225

3.841

1.826

9.345

1.387

10.594

6.103

10.274

30.598

2.375

3.199

104.845

651.355

383.493

988.753

164.885

10.746

1.958

5.983

6.144

in
pu

ts
iz

e
in

M
B

1 1.5 2 2.5 3 3.5 4 4.5 5

bible.txt

world192.txt

dickens

mozilla

nci

reymont

samba

webster

xml

x-ray

sources

proteins

dna

english

dblp.xml

coreutils

einstein.en.txt

kernel

world-leaders

memory peak in bytes per input symbol excluding FM-index construction

XBWT fast XBWT lightweight Tunneled XBWT

XBWT fast SC XBWT lightweight SC Tunneled XBWT SC

Figure C.7: Memory peak during trie construction and excluding FM-index construction.
The peak is measured in bytes per symbol of the input data. Algorithm variants
using a succinct counter instead of a normal counter are indicated by the same
color and a north west line pattern. Similar results on other test files already
were presented in [OSB18].

The memory peaks during trie construction (excluding FM-index construction)
are shown in Figure C.7. The figure shows that the memory peak can be reduced
most effective using succinct counters. The lightweight trie construction algorithm
reduces the memory peak only in cases where the final trie has a small amount of
nodes. This can also be seen by comparing Figure C.7 with Figure C.5. Tunneled
XBWT construction requires about 10 % more memory peak than normal XBWT,
mainly because of the additional component Din.

We also compared the speed of the Aho-Corasick algorithm (see Algorithm 5.6)
using the different trie representations. The tries were used to find all occurrences of

226 S E Q U E N C E A N A LY S I S B E N C H M A R K R E S U LT S

30105

32650

157038

21623

178387

6067

247649

491661

26657

23172

2509639

2267556

1864

16727610

2949908

231027

5308

154178

5276

nu
m

be
r

of
oc

cu
rr

en
ce

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

bible.txt

world192.txt

dickens

mozilla

nci

reymont

samba

webster

xml

x-ray

sources

proteins

dna

english

dblp.xml

coreutils

einstein.en.txt

kernel

world-leaders

multi-pattern search speed (string length / required time) in MB/s

multiple single-pattern
searches for all desired
patterns using grep

Aho-Corasick algorithm
using XBWT

Aho-Corasick algorithm
using tunneled XBWT

Figure C.8: Speed of the multi-pattern search using the Aho-Corasick algorithm compared
to multiple single-pattern searches for all patterns using grep. The Aho-Corasick
algorithm uses a priori constructed tries of the test files and searches for all
occurrences of the test file lines within the same test file. The grep speed is
estimated by executing grep with the last pattern of each file and multiplying
the required time by the number of overall patterns.

the lines of the input files within the input files themselves. We removed all newline
characters from the input files, so the amount of occurrences is generally larger than
the number of strings in the trie.

For a better comparability, we measured the speed when using multiple single-
pattern searches to find all occurrences. The used single-pattern search consists of the
popular linux command grep1 using one pattern per execution. We approximated
the multi pattern search time of grep by executing one grep search with the last
pattern in the test data and multiplying the time by the number of all patterns. This
was necessary because the amount of time can get very large if the number of grep
executions is big.

Unsurprisingly, Figure C.8 shows that it is beneficial to use multi-pattern search
with an XBWT especially if the number of patterns is large. For a smaller amount of
patterns, grep performance increases, see e.g. the test cases dna, reymont or world-

1 https://www.gnu.org/software/grep/manual/grep.html

https://www.gnu.org/software/grep/manual/grep.html

C.2 T R I E R E S U LT S 227

leaders in Figure C.8. Except for some outliers, the speed of multi-pattern search
using a tunneled XBWT is a little bit slower than the speed using a normal XBWT.
This is owed to the more complex navigation and failure link operations, but can be
accepted because the speed decreases by only about 5 %.

I N D E X

C array, 9
MR bit-vector, 159
RPE array, 90
RPTC array, 100
Σ, see alphabet
aux component, 94
cntc array, 161
$, see null-terminated
ω-interval, 11
ε, see empty string

Aho-Corasick algorithm, 153, 155
unrestricted, 157

alphabet, 9

backward search, 16
backward step, 13
balanced parentheses sequences, see

BPS
binary picture, 70

rectilinear, 72
binary search, 11, 29
bit-vector, 27
block-sorting compression, 25
BPS, 35

enclose, 36
findclose, 36
support, 36

Burrows-Wheeler-Transform, see BWT
BWT, 11

clustering, 26

extended, 153
index, 13
matrix, 12
retransformation, 15
tunneled, 56

code, 18
optimal, 18

cost model, 106

de Bruijn graph, 40
edge minimization, 136
edge reduction, 131

edge fusion, 140
empty string, 9
entropy, 19

of a sequence, 19
of an information source, 20

exact string matching, 10

FM-index, 11, 34
tunneled, 128, 149, 217

genome, 11, 125, 150
getIntervals, 34

intervalsymbols, 34

k-cyclic string, 40, 128
k-mer, 34, 40

interval, 34
interval boundaries bit-vector, 132

229

230 INDEX

prefix interval, 129
Knuth-Morris-Pratt algorithm, 11

lexicographic order, 9
LF-mapping, 13

MaxSNP, 76
move-to-front transform, see MTF
MTF, 23

NP-completeness, 69
null-terminated, 9

prefix interval, 50
height-maximal, 52
left-maximal, 52
length-maximal, 81
longest common suffix array, 52
node-disjoint, 54
Overlappings, 62
run-terminated, 81
self-overlapping, 65

prefix tree, 37

queue, 137, 161

range maximum query, 158
rank, 9

query, 27
support, 27

rating array, see RPTC array
Rectilinear picture rectangle cover

problem, 70
run, 23
run-length encoding, 22
Run-LF support, 87

select, 9

query, 29
support, 29

source encoding, 18
string, 9
substring, 9
succinct counter array, 165
suffix, 9
suffix array, 10

tree decomposition, 31
tree topology, 35
trie, 42

explicit failure link, 175
extended, 150
failure link, 150
implicit failure link, 175
record function, 150
tunneling, 170

tunnel benefit, 67, 101, 107
tunnel cost, 67, 101, 107
tunnel planning

greedy strategy, 116
greedy update strategy, 118
hirsch strategy, 111

tunneling, 54
backward step, 59
iterative, 62
side effects, 110

wavelet tree, 30
Wheeler graph, 38

navigation, 46
prefix interval cover problem, 67
rectilinear picture Wheeler graph,

72
succinct representation, 44

C O L O P H O N

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	2 Principles
	2.1 Suffix array and Burrows-Wheeler-Transform
	2.1.1 Burrows-Wheeler-Transform
	2.1.2 Retransformation
	2.1.3 Backward search

	2.2 Block-sorting compression
	2.2.1 Source encoding
	2.2.2 Run-length encoding
	2.2.3 Move-to-front transform
	2.2.4 Block-sorting compression

	2.3 Wavelet trees, rank, select and balanced parentheses
	2.3.1 Rank
	2.3.2 Select
	2.3.3 Wavelet trees
	2.3.4 Balanced parentheses sequences

	2.4 Wheeler graphs
	2.4.1 De Bruijn graphs
	2.4.2 Tries
	2.4.3 Succinct graph representation

	3 Tunneling theory
	3.1 Prefix intervals
	3.2 Tunneling
	3.2.1 Tunneled BWT computation
	3.2.2 Backward steps

	3.3 Overlappings
	3.4 Hardness of tunnel planning
	3.4.1 Introduction to complexity classes
	3.4.2 NP-completeness of Wheeler graph prefix interval cover
	3.4.3 Additional notes on tunnel planning complexity

	4 Application in data compression
	4.1 Run-terminated prefix intervals
	4.1.1 Definition and properties
	4.1.2 Computation
	4.1.3 Tunnel encoding

	4.2 Cost model
	4.2.1 Definition
	4.2.2 Validation

	4.3 Tunnel planning strategies
	4.3.1 Hirsch strategy
	4.3.2 Greedy strategy

	4.4 Experimental results

	5 Application in sequence analysis
	5.1 De Bruijn graph edge reduction and tunneling
	5.2 De Bruijn graph edge minimization
	5.2.1 Incremental algorithm
	5.2.2 Efficient incremental algorithm
	5.2.3 Experimental results

	5.3 Trie representation using the extended BWT
	5.3.1 XBWT Construction
	5.3.2 Experimental results

	5.4 Trie tunneling
	5.4.1 Tunneled XBWT introduction and trie traversal
	5.4.2 Failure link support
	5.4.3 Construction
	5.4.4 Experimental results

	6 Conclusion
	 Bibliography
	A Test data description
	B Data compression benchmark results
	B.1 Compressor benchmark
	B.2 Tunneling impact

	C Sequence analysis benchmark results
	C.1 De Bruijn graph edge reduction
	C.2 Trie results

	Index
	Colophon

