
Indexing Highly Repetitive String Collections,
Part I: Repetitiveness Measures

Gonzalo Navarro

University of Chile, Chile

Two decades ago, a breakthrough in indexing string collections made it possible to represent them

within their compressed space while at the same time offering indexed search functionalities. As
this new technology permeated through applications like bioinformatics, the string collections

experienced a growth that outperforms Moore’s Law and challenges our ability to handle them

even in compressed form. It turns out, fortunately, that many of these rapidly growing string
collections are highly repetitive, so that their information content is orders of magnitude lower

than their plain size. The statistical compression methods used for classical collections, however,

are blind to this repetitiveness, and therefore a new set of techniques has been developed in order
to properly exploit it. The resulting indexes form a new generation of data structures able to

handle the huge repetitive string collections that we are facing. In this survey, formed by two

parts, we cover the algorithmic developments that have led to these data structures.
In this first part, we describe the distinct compression paradigms that have been used to exploit

repetitiveness, and the algorithmic techniques that provide direct access to the compressed strings.
In the quest for an ideal measure of repetitiveness, we uncover a fascinating web of relations

between those measures, as well as the limits up to which the data can be recovered, and up to

which direct access to the compressed data can be provided. This is the basic aspect of indexability,
which is covered in the second part of this survey.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representa-
tions]; E.4 [Coding and information theory]: Data compaction and compression; F.2.2 [Anal-

ysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—Pat-

tern matching, Computations on discrete structures, Sorting and searching; H.2.1 [Database
management]: Physical design—Access methods; H.3.2 [Information storage and retrieval]:

Information storage—File organization; H.3.3 [Information storage and retrieval]: Informa-

tion search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Text indexing, string searching, compressed data structures,

repetitive string collections.

Funded by ANID Basal Funds FB0001, Millennium Science Initiative Program - Code ICN17 002,
and Fondecyt Grant 1-200038, Chile. Address: Gonzalo Navarro, Center for Biotechnology

and Bioengineering (CeBiB) and Millennium Institute for Foundational Research on Data

(IMFD), Department of Computer Science, University of Chile, Beauchef 851, Santiago, Chile,
gnavarro@dcc.uchile.cl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · G. Navarro

1. INTRODUCTION

Our increasing capacity for gathering and exploiting all sorts of data around us is
shaping modern society into ways that were unthinkable a couple of decades ago.
In bioinformatics, we have stepped in 20 years from sequencing the first human
genome to completing projects for sequencing 100,000 genomes1. Just storing such
a collection requires about 70 terabytes, but a common data analysis tool like a
suffix tree [Apostolico 1985] would require 5.5 petabytes. In astronomy, telescope
networks generating terabytes per hour are around the corner2. The web is esti-
mated to have 60 billion pages, with a total size of about 4 petabytes counting just
text content3. Estimations of the yearly amount of data generated in the world are
around 1.5 exabytes4.

Together with the immense opportunities brought by the data in all sorts of ar-
eas, we are faced to the immense challenge of efficiently storing, processing, and
analyzing such volumes of data. Approaches such as parallel and distributed com-
puting, secondary memory and streaming algorithms reduce time, but still pay a
price proportional to the data size in terms of amount of computation, storage
requirement, network use, energy consumption, and/or sheer hardware. This is
problematic because the growth rate of the data has already surpassed Moore’s
law in areas like bioinformatics and astronomy [Stephens et al. 2015]. Worse, these
methods must access the data in secondary memory, which is much slower than the
main memory. Therefore, not only we have to cope with orders-of-magnitude larger
data volumes, but we must operate on orders-of-magnitude slower storage devices.

A promising way to curb this growth is to focus on how much actual information
is carried by those data volumes. It turns out that many of the applications where
the data is growing the fastest feature large degrees of repetitiveness in the data,
that is, most of the content in each element is equal to content of other elements.
For example, let us focus on sequence and text data. Genome repositories typically
store many genomes of the same species. Two human genomes differ by about 0.1%
[Przeworski et al. 2000], and Lempel-Ziv-like compression [Lempel and Ziv 1976]
on such repositories report compression ratios (i.e., compressed divided by uncom-
pressed space) around 1% [Fritz et al. 2011]. A versioned document collection like
Wikipedia stored 10 terabytes by 2015, and it reported over 20 versions per article,
with the versions (i.e., near-repetitions) growing faster than original articles, and
1% Lempel-Ziv compression ratios5. A versioned software repository like GitHub
stored over 20 terabytes in 2016 and it also reported over 20 versions per project6.
Degrees of 40%–80% of duplication have been observed in tweets [Tao et al. 2013],
emails [Elsayed and Oard 2006], web pages [Henzinger 2006], and general software
repositories [Kapser and Godfrey 2005] as well.

These sample numbers show that we can aim at 100-fold reductions in the data

1https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
2https://www.nature.com/articles/d41586-018-01838-0
3https://www.worldwidewebsize.com and https://www.keycdn.com/support/

the-growth-of-web-page-size, see the average HTML size.
4http://groups.ischool.berkeley.edu/archive/how-much-info/how-much-info.pdf
5https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia
6https://blog.sourced.tech/post/tab vs spaces and http://blog.coderstats.net/github/

2013/event-types

Indexing Highly Repetitive String Collections, Part I · 3

representation size by using appropriate compression methods on highly repetitive
data sets. Such a reduction would allow us handling much larger data volumes in
main memory, which is considerably faster. Even in cases where the reduced data
still does not fit in main memory, we can expect a 100-fold reduction in storage,
network, hardware, and/or energy costs.

Just compressing the data, however, is not sufficient to reach this goal, because
we still need to decompress it in order to carry out any processing on it. For the
case of text documents, a number of “version control” systems like CVS7, SVN8,
and Git9, support particular types of repetitive collections, namely versioned ones,
where documents follow a controlled structure (typically linear or hierarchical) and
the systems can track which document is a variant of which. Those systems do
a good job in reducing space while supporting extraction of any version of any
document, mainly by storing the set of “edits” that distinguish each document
from a close version that is stored in plain form.

Still, just extraction of whole documents is not sufficient. In order to process
the data efficiently, we need data structures built on top it. What is needed is a
more ambitious concept, a compressed data structure [Navarro 2016]. Such a data
structure aims not only at representing the data within space close to its actual
information content, but also, within that space, at efficiently supporting direct
access, queries, analysis, and manipulation of the data without ever decompressing
it. This is in sharp contrast with classical data structures, which add (sometimes
very significant) extra space on top of the raw data (e.g., the suffix trees already
mentioned typically use 80 times the space of a compacted genome).

Compressed data structures are now 30 years old [Jacobson 1989], have made
their way into applications and companies [Navarro 2016], and include mature li-
braries10. Most compressed data structures, however, build on statistical compres-
sion [Cover and Thomas 2006], which is blind to repetitiveness [Kreft and Navarro
2013], and therefore fail to get even close to the compression ratios we have given for
highly repetitive scenarios. The development of compressed data structures aimed
at highly repetitive data is much more recent, and builds on variants of dictionary
compression [Cover and Thomas 2006; Storer and Szymanski 1982].

The current article is the first part of a survey on pattern matching on string
collections, one of the most fundamental problems that arise when extracting infor-
mation from text data, in the case where the string collection is highly repetitive
and thus stored in highly compressed form. In this part we focus on the measures of
repetitiveness for text collections and their support of direct access. We start with
the fascinating issue of how to best measure compressibility via repetitiveness, just
like the entropy of Shannon [1948] is the right concept to measure compressibility
via frequency skews: Section 3 covers a number of repetitiveness measures, from
ad-hoc ones like the size of a Lempel-Ziv parse [Lempel and Ziv 1976] to the most
recent and abstract ones based on string attractors and string complexity [Kempa
and Prezza 2018; Kociumaka et al. 2020], and the relations between them. We then

7https://savannah.nongnu.org/projects/cvs
8https://subversion.apache.org
9https://git-scm.com
10https://github.com/simongog/sdsl-lite

4 · G. Navarro

consider the problem of how can one access parts of the compressed string collection
directly without having to decompress it all: Section 4 explores the problem of giv-
ing such direct access on a string that is compressed using some of those measures,
which distinguishes a compressed data structure from sheer compression. Some
measures enable compression but apparently not direct access. The more ambi-
tious goal of pattern matching indexes with size bounded in terms of some of those
measures is developed in Part II of this survey [Navarro 2020].

2. NOTATION AND BASIC CONCEPTS

We assume basic knowledge on algorithms, data structures, and algorithm analysis.
In this section we define some fundamental concepts on strings, preceded by a few
more general concepts and notation remarks.

Computation model. We use the RAM model of computation, where we assume
the programs run on a random-access memory where words of w = Θ(log n) bits
are accessed and manipulated in constant time, where n is the input size. All the
typical arithmetic and logical operations on the machine words are carried out in
constant time, including multiplication and bit operations.

Complexities. We will use big-O notation for the time complexities, and in many
cases for the space complexities as well. Space complexities are measured in amount
of computer words, that is, O(X) space means O(X log n) bits. By poly x we mean
any polynomial in x, that is, xO(1), and polylog x denotes poly (log x). Logarithms
will be to the base 2 by default. Within big-O complexities, log x must be under-
stood as dlog(2 + x)e, to avoid border cases.

Indexed pattern matching. The problem consists in, given a string S, build a data
structure (called an index) so that, later, given a short query string, one efficiently
finds the places in S where the query string occurs. We aim at building indexes
whose size is bounded by a repetitiveness measure on S.

2.1 Strings

A string S = S[1 . . n] is a sequence of symbols drawn from a set Σ called the
alphabet. We will assume Σ = {1, 2, . . . , σ}. The length of S[1 . . n] is n, also
denoted |S|. We use S[i] to denote the i-th symbol of S and S[i . . j] = S[i] · · ·S[j]
to denote a substring of S. If i > j, then S[i . . j] = ε, the empty string. A prefix
of S is a substring of the form S[1 . . j] and a suffix is a substring of the form
S[i . . n] = S[i . .]. With SS′ we denote the concatenation of the strings S and S′,
that is, the symbols of S′ are appended after those of S. Sometimes we identify
a single symbol with a string of length 1, so that aS and Sa, with a ∈ Σ, denote
concatenations as well. In general, string collections will be viewed as a single string
that concatenates them all, with a suitable separator symbol among them.

The lexicographic order among strings is defined as in a dictionary. Let a, b ∈ Σ
and let S and S′ be strings. Then aS ≤ bS′ if a < b, or if a = b and S ≤ S′; and
ε ≤ S for every S.

For technical convenience, we will often assume that strings S[1 . . n] are termi-
nated with a special symbol S[n] = $, which does not appear elsewhere in S nor in Σ.
We assume that $ is smaller than every symbol in Σ to be consistent with the lexi-

Indexing Highly Repetitive String Collections, Part I · 5

cographic order. The string S[1 . . n] read backwards is denoted Srev = S[n] · · ·S[1];
note that in this case the terminator does not appear at the end of Srev.

2.2 Suffix Trees and Suffix Arrays

Suffix trees and suffix arrays are the most classical pattern matching indexes. The
suffix tree [Weiner 1973; McCreight 1976; Apostolico 1985] is a trie (or digital tree)
containing all the suffixes of S. That is, every suffix of S labels a single root-to-
leaf path in the suffix tree, and no node has two distinct children labeled by the
same symbol. Further, the unary paths (i.e., paths of nodes with a single child) are
compressed into single edges labeled by the concatenation of the contracted edge
symbols. Every internal node in the suffix tree corresponds to a substring of S that
appears more than once, and every leaf corresponds to a suffix. The leaves of the
suffix tree indicate the position of S where their corresponding suffixes start. Since
there are n suffixes in S, there are n leaves in the suffix tree, and since there are
no nodes with a single child, it has less than n internal nodes. The suffix tree can
then be represented within O(n) space, for example by representing every string
labeling edges with a couple of pointers to an occurrence of the label in S.

The suffix array [Manber and Myers 1993] of S[1 . . n] is the array A[1 . . n] of the
positions of the suffixes of S in lexicographic order. If the children of the suffix
tree nodes are lexicographically ordered by their first symbol, then the suffix array
corresponds to the leaves of the suffix tree in left-to-right order.

Example: Figure 1 shows the suffix tree and array of the string S = alabaralalabarda$.

2.3 Karp-Rabin Fingerprints

Karp and Rabin [1987] proposed a technique to compute a signature or fingerprint
of a string via hashing, in a way that enables (non-indexed) string matching in
O(n) average time. The signature κ(Q) of a string Q[1 . . q] is defined as

κ(Q) =

(
q∑
i=1

Q[i] · bi−1

)
mod p,

where b is an integer and p a prime number. It is not hard to devise the arithmetic
operations to compute the signatures of composed and decomposed strings, that is,
compute κ(Q ·Q′) from κ(Q) and κ(Q′), or κ(Q) from κ(Q ·Q′) and κ(Q′), or κ(Q′)
from κ(Q · Q′) and κ(Q) (possibly storing some precomputed exponents together
with the signatures).

3. COMPRESSORS AND MEASURES OF REPETITIVENESS

In statistical compression, where the goal is to exploit frequency skew, the so-called
statistical entropy defined by Shannon [1948] offers a measure of compressibility
that is both optimal and reachable. While statistical entropy is defined for infi-
nite sources, it can be adapted to individual strings. The resulting measure for
individual strings, called empirical entropy [Cover and Thomas 2006], turns out to
be a reachable lower bound (save for lower-order terms) to the space a semistatic
statistical compressor can achieve on that string.

6 · G. Navarro

$

la

r

alalabarda$

da$

alalabarda$ da$

$

a
bar da$

la

alalabarda$

da$

alalabarda$

bar

labarda$

bar

labarda$

r

alalabarda$

da$

bar

alalabarda$

da$

da$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a l b raa a l a b a r d a $ l a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Suffix tree

Suffix array

16 3 11 1 9 7 5 413 12 15 8 6 1417

String

2 10

Fig. 1. The suffix tree and suffix array of the string S = alabaralalabarda$. The suffix tree leaves

indicate the positions where the corresponding suffixes start, and those positions, collected left to

right, form the suffix array.

Statistical entropy, however, does not adequately capture other sources of com-
pressibility, particularly repetitiveness. In this arena, concepts are much less clear.
Beyond the ideal but uncomputable measure of string complexity proposed by Kol-
mogorov [1965], most popular measures of (compressibility by exploiting) repeti-
tiveness are ad-hoc, defined as the result of particular compressors, and there is not
yet a consensus measure that is both reachable and optimal within a reasonable set
of compression techniques. Still, many measures work well and have been used as
the basis of compressed and indexed sequence representations. In this section we
describe the most relevant concepts and measures.

3.1 The Unsuitability of Statistical Entropy

Shannon [1948] introduced a measure of compressibility that exploits the different
probabilities of the symbols emitted by a source. In its simplest form, the source
is “memoryless” and emits each symbol a ∈ Σ with a fixed probability pa. The

Indexing Highly Repetitive String Collections, Part I · 7

entropy is then defined as

H({pa}) =
∑
a∈Σ

pa log
1

pa
.

When all the probabilities pa are equal to 1/σ, the entropy is maximal, H = log σ.
In general, the entropy decreases as the probabilities are more skewed. This kind
of entropy is called statistical entropy.

In a more general form, the source may remember the last k symbols emitted,
C[1 . . k] and the probability pa|C of the next symbol a may depend on them. The
entropy is defined in this case as

H({pa,C}) =
∑
C∈Σk

pC
∑
a∈Σ

pa|C log
1

pa|C
,

where pC is the global probabilty of the source emitting C.
Other more general kinds of sources are considered, including those that have

“infinite” memory of all the previous symbols emitted. Shannon [1948] shows that
any encoder of a random source of symbols with entropy H must emit, on average,
no less than H bits per symbol. The measure is also reachable: arithmetic coding
[Witten et al. 1987] compresses n symbols from such a source into nH+ 2 bits.

Shannon’s entropy can also be used to measure the entropy of a finite individual
sequence S[1 . . n]. The idea is to assume that the only source of compressibility of
the sequence are the different frequencies of its symbols. If we take the frequencies
as independent, the result is the zeroth order empirical entropy of S:

H0(S) =
∑
a∈Σ

na
n

log
n

na
,

where na is the number of times a occurs in S and we assume 0 log 0 = 0. This is
exactly the Shannon’s entropy of a memoryless source with probabilities pa = na/n,
that is, we use the relative frequencies of the symbols in S as an estimate of the
probabilities of a hypothetical source that generated S (indeed, the most likely
source). The string S can then be encoded in nH0(S) + 2 bits with arithmetic
coding based on the symbol frequencies.

If we assume, instead, that the symbols in S are better predicted by knowing
their k preceding symbols, then we can use the kth order empirical entropy of S to
measure its compressibility:

Hk(S) =
∑
C∈Σk

nC
n
· H0(SC),

where SC is the sequence of the symbols following substring C in S and nC = |SC |.
Note that, if S has a unique $-terminator, nC is also the number of times C occurs in
S,11 and the measure corresponds to the Shannon entropy of a source with memory
k. Once again, an arithmetic coder encodes S into nHk(S) + 2 bits.

11Except if C corresponds to the last k symbols of S, but this does not affect the measure because
this substring contains $, so it is unique and nC = 0.

8 · G. Navarro

At this point, it is valid to wonder what disallows us to take k = n, so that
nC = nS = 1 if C = S and nC = 0 for the other strings of length k = n, and
therefore Hn(S) = 0. We could then encode S with arithmetic coding into 2 bits!

The trick is that the encoding sizes we have given assume that the decoder knows
the distribution, that is, the probabilities pa or pa|C or, in the case of empirical
entropies, the frequencies na and nC . This may be reasonable when analyzing the
average bit rate to encode a source that emits infinite sequences of symbols, but
not when we consider actual compression ratios of finite sequences.

Transmitting the symbol frequencies (called the model) to the decoder (or, equiv-
alently, storing it together with the compressed string) in plain form requires σ log n
bits for the zeroth order entropy, and σk+1 log n bits for the kth order entropy. With
this simple model encoding, we cannot hope to achieve compression for k ≥ logσ n,
because encoding the model then takes more space than the uncompressed string.
In fact, this is not far from the best that can be done: Gagie [2006] shows that,
for about that value of k, nHk(S) sometimes falls below Kolmogorov’s complexity,
and thus there is no hope of encoding S within that size. In his words, “kth-order
empirical entropy stops being a reasonable complexity metric for almost all strings”.

With the restriction k ≤ logσ n, consider now that we concatenate two identical
strings, S ·S. All the relative symbol frequencies in S ·S are identical to those in S,
except for the k − 1 substrings C that cover the concatenation point; therefore we
can expect thatHk(S ·S) ≈ Hk(S). Indeed, it can be shown thatHk(S ·S) ≥ Hk(S)
[Kreft and Navarro 2013, Lem. 2.6]. That is, the empirical entropy is insensitive to
the repetitiveness, and any compressor reaching the empirical entropy will compress
S · S to about twice the space it uses to compress S. Instead, being aware of
repetitivenss allows us to compress S in any form and then somehow state that a
second copy of S follows.

This explains why the compressed indexes based on statistical entropy [Navarro
and Mäkinen 2007] are not suitable for indexing highly repetitive string collections.
In those, the space reduction that can be obtained by exploiting the repetitiveness is
much more significant than what can be obtained by exploiting skewed frequencies.

Dictionary methods [Storer and Szymanski 1982], based on representing S as the
concatenation of strings from a set (a “dictionary”), generally obtained from S
itself, are more adequate to exploit repetitiveness: a small dictionary of distinct
substrings of S should suffice if S is highly repetitive. Though many dictionary
methods can be shown to converge to Shannon’s entropy, our focus here is their
ability to capture repetitiveness. In the sequel we cover various such methods, not
only as compression methods but also as ways to measure repetitiveness.

We refer the reader to Cover and Thomas [2006] for a deeper discussion of the
concepts of Shannon entropy and its relation to dictionary methods.

3.2 Lempel-Ziv Compression: Measures z and zno

Lempel and Ziv [1976] proposed a technique to measure the “complexity” of individ-
ual strings based on their repetitiveness (in our case, complexity can be interpreted
as incompressibility). The compressor LZ77 [Ziv and Lempel 1977] and many other
variants [Bell et al. 1990] that derived from this measure have become very popular;
they are behind compression software like zip, p7zip, gzip, arj, etc.

Indexing Highly Repetitive String Collections, Part I · 9

3.2.1 The compressor. The original Lempel-Ziv method parses (i.e., partitions)
S[1 . . n] into phrases (i.e., substrings) as follows, starting from i← 1:

(1) Find the shortest prefix S[i . . j] of S[i . . n] that does not occur in S starting
before position i.

(2) The next phrase is then S[i . . j].

(3) Set i← j + 1. If i ≤ n, continue forming phrases.

This greedy parsing method can be proved to be optimal (i.e., producing the
least number of phrases) among all left-to-right parses (i.e., those where phrases
must have an occurrence starting to their left) [Lempel and Ziv 1976, Thm. 1].

A compressor can be obtained by encoding each phrase as a triplet: If S[i . . j]
is the next phrase, then S[i . . j − 1] occurs somewhere to the left of i in S. Let
S[i′ . . j′] be one such occurrence (called the source of the phrase), that is, i′ < i.
The next triplet is then 〈i′, j− i, S[j]〉. When j− i = 0, any empty substring can be
the source, and it is customary to assume i′ = 0, so that the triplet is 〈0, 0, S[j]〉.
Example: The string S = alabaralalabarda$ is parsed as a|l|ab|ar|alal|abard|a$, where
we use the vertical bar to separate the phrases. A possible triplet encoding is
〈0, 0, a〉〈0, 0, l〉〈1, 1, b〉〈1, 1, r〉〈1, 3, l〉〈3, 4, d〉〈11, 1, $〉.

From the triplets, we easily recover S by starting with an empty string S and,
for each new triplet 〈p, `, c〉, appending S[p . . p+ `− 1] and then c.12

This extremely fast decompression is one of the reasons of the popularity of
Lempel-Ziv compression. Another reason is that, though not as easily as decom-
pression, it is also possible to carry out the compression (i.e., the parsing) in O(n)
time [Rodeh et al. 1981; Storer and Szymanski 1982]. Recently, there has been
a lot of research on doing the parsing within little extra space, see for example
Kärkkäinen et al. [2016], Fischer et al. [2018], and references therein.

3.2.2 The measure. For this survey we will use a slightly different variant of the
Lempel-Ziv parsing, which is less popular for compression but more coherent with
other measures of repetitiveness, and simplifies indexing. The parsing into phrases
is redefined as follows, also starting with i← 1.

(1) Find the longest prefix S[i . . j] of S[i . . n] that occurs in S starting before
position i.

(2) If j ≥ i, that is, S[i . . j] is nonempty, then the next phrase is S[i . . j], and we
set i← j + 1.

(3) Otherwise, the next phrase is the explicit symbol S[i], which has not appeared
before, and we set i← i+ 1.

(4) If i ≤ n, continue forming phrases.

We define the Lempel-Ziv measure of S[1 . . n] as the number z = z(S) of phrases
into which S is parsed by this procedure.

Example: Figure 2 shows how the string S = alabaralalabarda$ is parsed into z(S) =

11 phrases, a | l |a| b |a| r |ala|labar| d |a| $, with the explicit symbols boxed.

12Since the source may overlap the formed phrase, the copy of S[p . . p + ` − 1] to the end of S
must be done left to right: consider recovering S = an−1$ from the encoding 〈0, 0, a〉〈1, n− 2, $〉.

10 · G. Navarro

a l b raa a l a l b a r d a $ a

Fig. 2. Lempel-Ziv parse of S = alabaralalabarda$. Each phrase is either an underlined string,

which appears before, or a boxed symbol. The arrows go from each underlined string to one of its

occurrences to the left (which is underlined with a dashed line).

The two parsing variants are closely related. If the original variant forms the
phrase S[i . . j] with j > i, then S[i . . j − 1] is the longest prefix of S[i . . n] that
appears starting to the left of i, so this new variant will form the phrase S[i . . j−1]
(if i < j) and its next phrase will be either just S[j] or a longer prefix of S[j . . n]. It is
not hard to see that the compression algorithms for both variants are the same, and
that the greedy parsing is also optimal for this variant. It follows that z′ ≤ z ≤ 2z′,
where z′ is the number of phrases created with the original method. Thus, z and z′

are equivalent in asymptotic terms. In particular, the triplet encoding we described
shows that one can encode S within O(z log n) bits (or O(z) words), which makes
z a reachable compressibility measure.

3.2.3 A weaker variant. Storer and Szymanski [1982] use a slightly weaker Lempel-
Ziv parse, where the source S[i′ . . j′] of S[i . . j] must be completely contained in
S[1 . . i − 1]. That is, it must hold that j′ < i, not just i′ < i. The same greedy
parsing described, using this stricter condition, also yields the least number of
phrases [Storer and Szymanski 1982, Thm. 10 with p = 1]. The phrase encoding
and decompression proceed in exactly the same way, and linear-time parsing is also
possible [Crochemore et al. 2012]. The number of phrases obtained in this case will
be called zno, with no standing for “no overlap” between phrases and their sources.

This parsing simplifies, for example, direct pattern matching on the compressed
string [Gasieniec et al. 1996; Farach and Thorup 1998] or creating context-free
grammars from the Lempel-Ziv parse [Rytter 2003].13 It comes with a price, how-
ever. Not only zno(S) ≥ z(S) holds for every string S because the greedy parsings
are optimal, but also zno can be Θ(log n) times larger than z, for example on the

string S = an−1$, where z = 3 (with parsing a |an−2| $) and zno = Θ(log n) (with

parsing a |a|a2|a4|a8| · · ·).

3.2.4 Evaluation. Apart from fast compression and decompression, a reason for
the popularity of Lempel-Ziv compression is that all of its variants converge to
the statistical entropy [Lempel and Ziv 1976], even on individual strings [Kosaraju
and Manzini 2000], though statistical methods converge faster (i.e., their sublinear
extra space over the empirical entropy of S[1 . . n] is a slower-growing function of
n). In particular, it holds that zno = O(n/ logσ n), so the space O(zno) is at worst
Θ((n/ logσ n) log n) = Θ(n log σ) bits, proportional to the plain size of S.

More important for us is that Lempel-Ziv captures repetitiveness. In our preced-

13A Lempel-Ziv based index also claims to need this restricted parsing [Kreft and Navarro 2013],
but in fact they can handle the original parsing with no changes.

Indexing Highly Repetitive String Collections, Part I · 11

a l b raa a l a b a r d a $ al

Fig. 3. A bidirectional macro scheme for S = alabaralalabarda$, with the conventions of Figure 2.

ing example of the string S ·S, we have z(S ·S) ≤ z(S)+1 and zno(S ·S) ≤ zno(S)+1
(i.e., we need at most one extra phrase to capture the second copy of S).

Despite the success of Lempel-Ziv compression and its frequent use as a gold
standard to quantify repetitiveness, the measure z (and also zno) has some pitfalls:

—It is asymmetric, that is, z(S) may differ from z(Srev). For example, removing
the terminator $ to avoid complications, alabaralalabarda is parsed into z = 10
phrases, whereas its reverse adrabalalarabala requires only z = 9.

—It is monotonic when removing suffixes, but not prefixes, that is, z(S′) can be
larger than z(S · S′). For example, aaabaaabaaa is parsed into z = 4 phrases,

a |aa| b |aaabaaa, but aabaaabaaa needs z = 5, a |a| b |aa|abaaa.

—Although it is the optimal size of a left-to-right parse, z is arguably not optimal
within a broader class of plausible compressed representations. One can represent
S using fewer phrases by allowing their sources to occur also to their right in S,
as we show with the next measure.

3.3 Bidirectional Macro Schemes: Measure b

Storer and Szymanski [1982] proposed an extension of Lempel-Ziv parsing that
allows sources to be to the left or to the right of their corresponding phrases, as
long as every symbol can eventually be decoded by following the dependencies
between phrases and sources. They called such a parse a “bidirectional macro
scheme”. Analogously to the Lempel-Ziv parsing variant we are using, a phrase is
either a substring that appears elsewhere, or an explicit symbol.

The dependencies between sources and phrases can be expressed through a func-
tion f , such that f(i) = j if position S[i] is to be obtained from S[j]; we set
f(i) = 0 if S[i] is an explicit symbol. Otherwise, if S[i . . j] is a copied phrase, then
f(i+t) = f(i)+t for all 0 ≤ t ≤ j− i, that is, S[f(i) . . f(j)] is the source of S[i . . j].
The bidirectional macro scheme is valid if, for each 1 ≤ i ≤ n, there is a k > 0 such
that fk(i) = 0, that is, every position is eventually decoded by repeatedly looking
for the sources.

We call b = b(S) the minimum number of phrases of a bidirectional macro scheme
for S[1 . . n]. It obviously holds that b(S) ≤ z(S) for every string S because Lempel-
Ziv is just one possible bidirectional macro scheme.

Example: Figure 3 shows a bidirectional macro scheme for S = alabaralalabarda$

formed by b = 10 phrases, S = ala| b |a| r | a | l |alabar| d |a| $ (we had z = 11 for the
same string, see Figure 2). It has function f [1 . . n] = 〈7, 8, 9, 0, 3, 0, 0, 0, 1, 2, 3, 4, 5, 6,
0, 11, 0〉. One can see that every symbol can eventually be obtained from the explicit
ones. For example, following the arrows in the figure (or, similarly, iterating the
function f), we can obtain S[13] = S[5] = S[3] = S[9] = S[1] = S[7] = a.

12 · G. Navarro

a l b raa a l a a b a r d a $l

A

BA a l

B B

A ba a r

A A

C

C A d a $B B

Fig. 4. A context-free grammar generating the string S = alabaralalabarda$. The rules of the

grammar are on the bottom. On the top we show the parse tree.

Just as for Lempel-Ziv, we can compress S to O(b) space by encoding the source
of each of the b phrases. It is not hard to recover S[1 . . n] in O(n) time from
the encoded phrases, because when we traverse t positions until finding an explicit
symbol in time O(t), we discover the contents of all those t positions. Instead,
finding the smallest bidirectional macro scheme is NP-hard [Gallant 1982]. This is
probably the reason that made this technique less popular, although some attempts
exist to approach it heuristically [Nishimoto and Tabei 2019; Russo et al. 2020].

As said, it always holds that b ≤ z. Gagie et al. [2018] (corrected in Navarro et al.
[2021]) showed that z = O(b log(n/b)) for every string family, and that this bound
is tight: in the Fibonacci words, where F1 = b, F2 = a, and Fk = Fk−1 · Fk−2 for
k > 2, it holds that b = O(1) and z = Θ(log n).

Measure b is the smallest of those we study that is reachable, that is, we can
compress S[1 . . n] to O(b) words. It is also symmetric, unlike z: b(S) = b(Srev).
Still, b is not monotonic: there are strings S and S′ where b(S) > b(S · S′).14

3.4 Grammar Compression: Measures g and grl

Kieffer and Yang [2000] introduced a compression technique based on context-free
grammars (the idea can be traced back to Rubin [1976]). Given S[1 . . n], we find a
grammar that generates only the string S, and use it as a compressed representation.
The size of a grammar is the sum of the lengths of the right-hand sides of the rules
(we avoid empty right-hand sides).

Example: Figure 4 shows a context-free grammar that generates only the string
S = alabaralalabarda$. The grammar has three rules, A→ al, B → Aabar, and the
initial rule C → BABda$. The sum of the lengths of the right-hand sides of the
rules is 13, the grammar size.

Note that, in a grammar that generates only one string, there is exactly one rule
A → X1 · · ·Xk per nonterminal A, where each Xi is a terminal or a nonterminal
(if there is more than one rule per nonterminal, these must be redundant and we
can leave only one).

Figure 4 also displays the parse tree of the grammar: an ordinal labeled tree
where the root is labeled with the initial symbol, the leaves are labeled with the

14Paolo Ferragina and Francesco Tosoni (personal communication) show that b(aabaaaabaa) = 5
but b(aabaaaabaaa) = 4.

Indexing Highly Repetitive String Collections, Part I · 13

a l b raa d a $

A

B B

A

C

Fig. 5. The grammar tree of the grammar of Figure 4.

terminals that spell out S, and each internal node is labeled with a nonterminal A:
if A→ X1 · · ·Xk, then the node has k children labeled, left to right, X1, . . . , Xk.

Kieffer and Yang [2000] prove that grammars that satisfy a few reasonable rules
reach the kth order entropy of a source, and the same holds for the empirical entropy
of individual strings [Ochoa and Navarro 2019]. Their size is always O(n/ logσ n).

Grammar compression is interesting for us because repetitive strings should have
small grammars. Our associated measure of repetitiveness is then the size g = g(S)
of the smallest grammar that generates only S. It is known that zno ≤ g =
O(zno log(n/zno)) [Charikar et al. 2002; Rytter 2003; Charikar et al. 2005], and
even g = O(z log(n/z)) [Gawrychowski 2011, Lem. 8].

Finding such a smallest grammar is NP-complete, however [Storer and Szymanski
1982; Charikar et al. 2005]. This has not made grammar compression unpopular,
because several efficient constructions yield grammars of size O(zno log(n/zno)) and
even O(z log(n/z)) [Rytter 2003; Charikar et al. 2005; Sakamoto 2005; Jeż 2015;
Jeż 2016]. Further, heuristics like RePair [Larsson and Moffat 2000] or Sequitur
[Nevill-Manning et al. 1994] perform extremely well and are preferred in practice.

Since it always holds that zno ≤ g, a natural question is why grammar compres-
sion is interesting. One important reason is that grammars allow for direct access
to the compressed string in logarithmic time, as we will describe in Section 4.1.
For now, a simple version illustrates its power. A grammar construction algorithm
produces balanced grammars if the height of their parse tree is O(log n) when built
on strings of length n. On a balanced grammar for S[1 . . n], with constant-size
rules, it is very easy to extract any symbol S[i] by virtually traversing the parse
tree, if one stores the lengths of the string represented by each nonterminal. The
first grammar constructions built from a Lempel-Ziv parse [Charikar et al. 2002;
Rytter 2003] had these properties, and thus they were the first structures of size
O(zno log(n/zno)) with access time O(log n).

A little more notation on grammars will be useful. We call exp(A) the string
of terminals to which nonterminal A expands, and |A| = |exp(A)|. To simplify
matters, we forbid rules of right-hand side length 0 or 1. An important concept
will be the grammar tree (cf. partial parse-tree [Rytter 2003]), which is obtained by
pruning the parse tree: for each nonterminal A, only one internal node labeled A is
retained; all the others are converted to leaves by pruning their subtree. Since the
grammar tree will have the k children of each unique nonterminal A → X1 · · ·Xk,
plus the root, its total number of nodes is g + 1 for a grammar of size g.

With the grammar tree we can easily see that zno ≤ g, for example. Consider

14 · G. Navarro

a grammar tree where only leftmost occurrence of every nonterminal is an internal
node. The string S is then cut into at most g substrings, each covered by a leaf
of the grammar tree. Each leaf is either a terminal or a pruned nonterminal. We
can then define a left-to-right parse with g phrases: the phrase covered by pruned
nonterminal A points to its copy below the internal node A, which is to its left;
terminal leaves become explicit symbols. Since this is a left-to-right parse with no
overlaps and zno is the least size of such a parse, we have zno ≤ g.

Example: Figure 5 shows the grammar tree of the parse tree of Figure 4, with 14

nodes. It induces the left-to-right parse S = a | l | a | b | a | r |al|alabar| d | a | $.

3.4.1 Run-length grammars. To handle some anomalies that occur when com-
pressing repetitive strings with grammars, Nishimoto et al. [2016] proposed to en-
rich context-free grammars with run-length rules, which are of the form A → Xt,
where X is a terminal or a nonterminal and t ≥ 2 is an integer. The rule is equiv-
alent to A → X · · ·X with t repetitions of X, but it is assumed to be of size 2.
Grammars that use run-length rules are called run-length (context-free) grammars.

We call grl = grl(S) the size of the smallest run-length grammar that generates S.
It obviously holds that grl(S) ≤ g(S) for every string S. It can also be proved that
z(S) ≤ grl(S) for every string S [Gagie et al. 2018]15. An interesting connection
with bidirectional macro schemes is that grl = O(b log(n/b)) (from where z =
O(b log(n/b)) is obtained) [Gagie et al. 2018; Navarro et al. 2021]. There is no clear
dominance between grl and zno, however: On the string family S = an−1$ we have
grl = O(1) and zno = Θ(log n) (as well as g = Θ(log n)), but there exist string
families where grl = Ω(zno log n/ log log n) [Bille et al. 2018] (the weaker result
g = Ω(zno log n/ log log n) was known before [Charikar et al. 2005; Hucke et al.
2016]).

The parse tree of a run-length grammar is the same as if rules A → Xt were
written as A → X · · ·X. The grammar tree, instead, is modified to ensure it has
grl + 1 nodes if the grammar is of size grl: The internal node labeled A has two
children, the left one is labeled X and the right one is labeled X [t−1]. Those special
marked nodes are treated differently in the various indexes and access methods on
run-length grammars.

3.5 Collage Systems: Measure c

To generalize sequential pattern matching algorithms, Kida et al. [2003] proposed an
extension of run-length grammars called collage systems. These allow, in addition,
truncation rules of the form A → B[t] and A → [t]B, which are of size 2 and mean
that exp(A) consists of the first or last t symbols of exp(B), respectively. Collage
systems also extend the composition systems of Gasieniec et al. [1996], which lack
the run-length rules.

Example: A collage system generating S = alabaralalabarda$, though larger than our
grammar, is A→ al, B → AAabar, B′ → [6]B, and the initial rule C → B′Bda$.

The size of the smallest collage system generating a string S is called c = c(S),
and thus it obviously holds that c(S) ≤ grl(S) for every string S. Kida et al. [2003]

15They claim z ≤ 2grl because they use a different definition of grammar size.

Indexing Highly Repetitive String Collections, Part I · 15

a

d

l

l

$

l

r

b

b

a

a

r

a

a

a

a

aa
l

b
r

a
a

a
l

a
a

b
a

r
d

a
l

$ 17

16

3

1

9

7

5

13

4

12

15

2

10

8

6

14

11

$

a $

a b a r a l a l a b a r a $d

a b a r a $d

a l b raa a l a a b a r d al

a l a b a r a $d

a l a l a b a r a $d

a r a l a l a b a r a $d

a r a $d

b a r a l a l a b a r a $d

b a r a $d

a $d

l a b a r a l a l a b a r a $d

l a b a r a $d

l a l a b a r a $d

r a l a l a b a r a $d

r a $d

$

Fig. 6. The list of suffixes of S = alabaralalabarda$ in increasing lexicographic order. The sequence

of preceding symbols (in gray) forms the BWT of S, Sbwt = adll$lrbbaaraaaaa. The run heads
are boxed. To their left, we show how they are mapped to S and become the explicit symbols of

the induced bidirectional macro scheme, using the same conventions of Figure 2. On the right we

show the suffix array of S.

also proved that c = O(z log z); a better bound c = O(z) was recently proved by
Navarro et al. [2021]. This is interesting because it sheds light on what must be
added to grammars in order to make them as powerful as Lempel-Ziv parses.

Navarro et al. [2021] also prove lower bounds on c when restricted to what they
call internal collage systems, where exp(A) must appear in S for every nonterminal
A. This avoids collage systems that generate a huge string from which a small
string S is then obtained by truncation. For internal collage systems it holds that
b = O(c), and on Fibonacci words it holds b = O(1) and c = Θ(log n). Instead,
while the bound c = O(z) also holds for internal collage systems, it is unknown if
there are string families where c = o(z), even for general collage systems.

3.6 Burrows-Wheeler Transform: Measure r

Burrows and Wheeler [1994] designed a reversible transformation with the goal of
making strings easier to compress by local methods. The Burrows-Wheeler Trans-
form (BWT) of S[1 . . n], Sbwt, is a permutation of S obtained as follows:

(1) Sort all the suffixes of S lexicographically (as in the suffix array).

(2) Collect, in increasing order, the symbol preceding each suffix (the symbol pre-
ceding the longest suffix is taken to be $).

Example: The BWT of S = alabaralalabarda$ is Sbwt = adll$lrbbaaraaaaa, as shown
in Figure 6 (ignore the leftmost part of the figure for now).

It turns out that, by properly partitioning Sbwt and applying zeroth-order com-
pression to each piece, one obtains kth order compression of S [Manzini 2001;

16 · G. Navarro

Ferragina et al. 2005; Gog et al. 2019]. The reason behind this fact is that the
BWT puts together all the suffixes starting with the same context C of length k,
for any k. Then, encoding the symbols preceding those suffixes is the same as
encoding together the symbols preceding the occurrences of each context C in S.
Compare with the definition of empirical kth order entropy we gave in Section 3.1
applied to the reverse of S, Hk(Srev).

The BWT has a strong connection with the suffix array A of S; see the right of
Figure 6: it is not hard to see that

Sbwt[j] = S[A[j]− 1],

if we interpret S[0] = S[n]. From the suffix array, which can be built in linear time
[Kim et al. 2005; Ko and Aluru 2005; Kärkkäinen et al. 2006], we easily compute
the BWT. The BWT is also easily reversed in linear time [Burrows and Wheeler
1994] and even within compact space [Kärkkäinen and Puglisi 2010; Kärkkäinen
et al. 2012]. The connection between the BWT and the suffix array has been used to
implement fast searches on S[1 . . n] in nHk(S) + o(n log σ) bits of space [Ferragina
and Manzini 2005; Navarro and Mäkinen 2007].

In addition, the BWT has interesting properties on highly repetitive strings,
with connections to the measures we have been studying. Let us define r = r(S)
as the number of equal-symbol runs in Sbwt. Since the BWT is reversible, we can
represent S in O(r) space, by encoding the r symbols and run lengths of Sbwt.
While it is not known how to provide fast access to any S[i] within this O(r) space,
it is possible to provide fast pattern searches by emulating the original BWT-based
indexes [Mäkinen and Navarro 2005; Mäkinen et al. 2010; Gagie et al. 2020].

Example: The BWT of S = alabaralalabarda$, Sbwt = adll$lrbbaaraaaaa, has r(S) =
10 runs. It can be encoded by the symbols and lengths of the runs: (a, 1), (d, 1), (l, 2),
($, 1), (l, 1), (r, 1), (b, 2), (a, 2), (r, 1), (a, 5), and then we can recover S from Sbwt.

There is no direct dominance relation between BWT runs and Lempel-Ziv parses
or grammars: on the de Bruijn sequences over binary alphabets,16 it holds r = Θ(n)
[Belazzougui et al. 2015] and thus, since g = O(n/ log n), we have r = Ω(g log n).
On the even Fibonacci words, on the other hand, it holds that r = O(1) and
z = Θ(log n) [Prezza 2016; Navarro et al. 2021].

Interestingly, a relation of r with bidirectional macro schemes can be proved,
b = O(r) [Navarro et al. 2021], by noting that the BWT runs induce a bidirectional
macro scheme of size 2r: If we map each position Sbwt[j] starting a run to the
position S[i] where Sbwt[j] occurs, then we define the phrases as all those explicit
positions i plus the (non-explicit) substrings between those explicit positions. Since
that is shown to be a valid bidirectional scheme, it follows that b ≤ 2r.

Example: On S = alabaralalabarda$, with Sbwt = adll$lrbbaaraaaaa, the correspond-

ing bidirectional macro scheme is S = a | l | a | b |a| r |a| l |alaba| r | d | a | $, of size
13. See the leftmost part of Figure 6.

As a final observation, we note that a drawback of r as a repetitiveness measure
is that r(S) and r(Srev) may differ by a factor of Ω(logn) [Giuliani et al. 2020].

16The de Bruijn sequence of degree k over an alphabet of size σ contains all the possible substrings
of length k within the minimum possible length, σk + k − 1.

Indexing Highly Repetitive String Collections, Part I · 17

a l b raa a l a l b a r d a $a

Fig. 7. The lex-parse of S = alabaralalabarda$, with the same conventions of Figure 2.

Further, r depends on the order of the alphabet; it is NP-hard to find the alphabet
permutation that minimizes r [Bentley et al. 2019].

Example: Replacing a by e in S = alabaralalabarda$ we obtain S′ = elebereleleberde$,
whose BWT has only r(S′) = 8 runs.

3.7 Lexicographic Parsing: Measure v

Navarro et al. [2021] generalized the Lempel-Ziv parsing into “ordered” parsings,
which are bidirectional macro schemes where each nonexplicit phrase equals some
substring of S that is smaller under some criterion (in Lempel-Ziv, the criterion is
to start earlier in S). A particularly interesting case are the so-called lexicographic
parsings, where each nonexplicit phrase S[i . . j] must have a copy S[i′ . . j′] where
the suffix S[i′ . .] is lexicographically smaller than S[i . .]. The smallest lexicographic
parse of S is called the lex-parse of S and has v = v(S) phrases. It is obtained by
processing S left to right and maximizing the length of each phrase, as for Lempel-
Ziv, that is, S[i . . j] is the longest prefix of S[i . .] that occurs at some S[i′ . . j′]
where the suffix S[i′ . .] is lexicographically smaller than S[i . .]. Note that this is
the same to say that S[i′ . .] is the suffix that lexicographically precedes S[i . .].

Example: Figure 7 gives the lex-parse of S = a| l |a| b |a| r |ala|labar| d | a | $, of size
v(S) = 11. For example, the first phrase is a because the suffix alabaralalabarda$
shares a prefix of length 1 with its lexicographically preceding suffix, abarda$, and

the second phrase is the explicit symbol l because it shares no prefix with its lexico-
graphically preceding suffix, da$. Just like r, the value of v depends on the alphabet
ordering, for example for S′ = elebereleleberde$ we have v(S′) = 10.

Measure v has several interesting characteristics. First, it can be computed in lin-
ear time via the so-called longest common prefix array [Kasai et al. 2001]. Second,
apart from b = O(v) because the lex-parse is a bidirectional macro scheme, it holds
that v = O(r), because the bidirectional macro scheme induced by the runs of Sbwt

is also lexicographic [Navarro et al. 2021] (v similarly subsumes other lexicographic
parses like lcpcomp [Dinklage et al. 2017]). Note that, although r and z are incom-
parable, v is never asymptotically larger than r. Navarro et al. [2021] also connect
v with grammars, by showing that v ≤ grl, and therefore v = O(b log(n/b)) and
v ≤ nHk + o(n log σ). It follows that r = Ω(v log n) on binary de Bruijn sequences,
where r = Θ(n) and v = O(n/ log n). They also show that v = Θ(log n) (and thus
v = Ω(b log n)) on the odd Fibonacci words and r = O(1) (and thus c = Ω(r log n))
on the even ones. On the other hand, it is unknown if there are string families
where z = o(v).

18 · G. Navarro

a

la
la

bar

bar

r

$

da$

$

bar

r

labarda$

da$

alalabarda$

Fig. 8. The CDAWG of string S = alabaralalabarda$.

3.8 Compact Directed Acyclic Word Graphs: Measure e

Measure r exposes the regularities that appear in the suffix array of repetitive
sequences S. As seen in Section 2.2, the suffix array corresponds to the leaves
of the suffix tree, where each suffix of S labels a path towards a distinct leaf. A
Compact Directed Acyclic Word Graph (CDAWG) [Blumer et al. 1987] is obtained
by merging all the identical subtrees of the suffix tree. The suffix trees of repetitive
strings tend to have large isomorphic subtrees, which yields small CDAWGs. The
number e of nodes plus edges in the CDAWG of S, is then a repetitiveness measure.
The CDAWG is also built in linear time [Blumer et al. 1987].

Example: Figure 8 shows the CDAWG of S = alabaralalabarda$, and Figure 1 shows
its suffix tree and array. The CDAWG has 5 nodes and 14 edges, so e = 19. Note,
for example, that all the suffixes starting with r are preceded by a, all the suffixes
starting with ar are preceded by b, and so on until alabar. This causes identical
subtrees at the nodes reached by all those substrings, r, ar, bar, abar, labar, and
alabar. All those nodes become the single CDAWG node that is reachable from
the root by those strings. This also relates with r: the suffix tree nodes corre-
spond to suffix array ranges A[16 . . 17], A[8 . . 9], A[10 . . 11], A[3 . . 4], A[13 . . 14],
and A[5 . . 6]. All but the last such intervals, consequently, fall inside BWT runs
with symbols a, b, a, l, and a. There are other larger identical subtrees, like those
rooted by the nodes reached by la and ala, corresponding to intervals A[13 . . 15] and
A[5 . . 8], the first of which is within a run, Sbwt[13 . . 15] = aaa. Finally, the run
Sbwt[13 . . 17] = aaaaa corresponds to two consecutive equal subtrees, with the suffix
array intervals A[13 . . 17] and A[5 . . 9].

This is the weakest repetitiveness measure among those we study. It always
holds that e = Ω(max(z, r)) [Belazzougui et al. 2015] and e = Ω(g) [Belazzougui
and Cunial 2017]. Worse, on some string families (as simple as an−1$) e can be
Θ(n) times larger than r or z [Belazzougui et al. 2015] and Θ(n/ log n) times larger
than g [Belazzougui and Cunial 2017]. The CDAWG is, on the other hand, well
suited for pattern searching, due to its strong connection with the suffix tree.

Indexing Highly Repetitive String Collections, Part I · 19

3.9 String Attractors: Measure γ

Kempa and Prezza [2018] proposed a new measure of repetitiveness that takes a
different approach: It is a direct measure on the string S instead of the result of
a specific compression method. Their goal was to unify the existing measures into
a cleaner and more abstract characterization of the string. An attractor of S is a
set Γ of positions in S such that any substring S[i . . j] must have a copy including
an element of Γ. The substrings of a repetitive string should be covered with small
attractors. The measure is then γ = γ(S), the smallest size of an attractor Γ of
S. This measure is obviously invariant to string reversals, γ(S) = γ(Srev), but it
is not monotonic when we append symbols to the string [Mantaci et al. 2021].

Example: An attractor of string S = alabaralalabarda$ is Γ = {4, 6, 7, 8, 15, 17}. We
know that this is the smallest possible attractor, γ(S) = 6, because it coincides with
the alphabet size σ, and it must obviously hold that γ ≥ σ.

In general, it is NP-complete to find the smallest attractor size for S [Kempa and
Prezza 2018], but in exchange they show that γ = O(min(b, c, z, zno, r, grl, g)).17

Note that, with current knowledge, it would be sufficient to prove that γ = O(b),
because b asymptotically lower-bounds all those measures, as well as v. Indeed,
we can easily see that γ ≤ b: given a bidirectional macro scheme, take its explicit
symbol positions as the attractor Γ. Every substring S[i . . j] not containing an
explicit symbol (i.e., a position of Γ) is inside a phrase and thus it occurs somewhere
else, in particular at S[f(i) . . f(j)]. If this new substring does not contain an explicit
position, we continue with S[f2(i) . . f2(j)], and so on. In a valid macro scheme we
must eventually succeed; therefore Γ is a valid attractor.

Example: Our example attractor Γ = {4, 6, 7, 8, 15, 17} is derived in this way from
the bidirectional macro scheme of Figure 3.

That is, γ is a lower bound to all the other repetitiveness measures. Yet, we
do not know if it is reachable, that is, if we can represent S within space O(γ).
Instead, Kempa and Prezza [2018] show that O(γ log(n/γ)) space suffices not only
to encode S but also to provide logarithmic-time access to any S[i] (Section 4.2.3).

Christiansen et al. [2020] also show how to support indexed searches within
O(γ log(n/γ)) space. They actually build a particular run-length grammar of
that size, thus implying the bound grl = O(γ log(n/γ)). A stronger bound g =
O(γ log(n/γ)) is very recent.18

3.10 String Complexity: Measure δ

Our final measure of repetitiveness for a string S, δ = δ(S), is built on top of
the concept of string complexity, that is, the number S(k) of distinct substrings
of length k. Raskhodnikova et al. [2013] define δ = max{S(k)/k, 1 ≤ k ≤ n}. It
is not hard to see that δ(S) ≤ γ(S) for every string S [Christiansen et al. 2020]:
Since every substring of length k in S has a copy including some of its γ attractor
elements, there can be only kγ distinct substrings, that is, S(k) ≤ kγ for all k.

17For c they consider internal collage systems, recall Section 3.5.
18T. Kociumaka, personal communication.

20 · G. Navarro

r δ δ (n/)log

b gz g
rlc

no
z

γ γ (n/)

δ γ

e

v log

σn / nkn H log/ n log

δ (n/)log logδ δ

Fig. 9. Relations between the compressibility measures. A solid arrow from X to Y means that

X = O(Y) for all string families. For all solid and dotted arrows, there are string families where

X = o(Y), with the exceptions of γ → b and c → z. Grayed measures X mean that we can
encode every string in O(X) space; darker gray means that we can also provide efficient access

and indexed searches within O(X) space; for r we can only provide indexed searches.

Christiansen et al. [2020] also show how δ can be computed in linear time. Further,
δ is clearly monotonic and invariant upon reversals.

Example: For our string S = alabaralalabarda$ we have S(1) = 6, S(2) = 9,
S(3) = 10, S(4) = S(5) = S(6) = 11, and S(k) = 17− k + 1 for k > 6 (i.e., all the
substrings of length over 6 are different); therefore δ(S) = 6.

Kociumaka et al. [2020, 2021] show that, for every δ, there are string families
whose members all have measure δ and where γ = Ω(δ log(n/δ)). Although δ is
then strictly stronger than γ as a compressibility measure, they also show that it is
possible not only to represent S within O(δ log(n/δ)) space, but also to efficiently
access any symbol S[i] (see Section 4.2.3) and support indexed searches on S within
that space. Indeed, this space is optimal as a function of δ: for every 2 ≤ δ ≤ n
there are string families that need Ω(δ log(n/δ)) space to be represented. This
means that we know that o(δ log n) space is unreachable in general, whereas it is
unknown if o(γ log n) space can always be reached.

Raskhodnikova et al. [2013] prove that z = O(δ log(n/δ)), and it can also be
proved that grl = O(δ log(n/δ)) by building a run-length grammar of that size
[Kociumaka et al. 2021]. The same cannot be said about g: Kociumaka et al.
[2021] prove that for every n and 2 ≤ δ ≤ n there are string families where g =
Ω(δ log2(n/δ)/ log log(n/δ)). This establishes another separation between grl and
g. Recently, the only upper bound on r in terms of another repetitiveness measure
was obtained: r = O(δ log(n/δ) log δ) [Kempa and Kociumaka 2020]; this also
shows that r(S) and r(Srev) can differ only by a factor up to O(log2 n), because δ
is invariant upon reversals.

3.11 Wrapping Up

Figure 9 summarizes what is known about the repetitiveness measures we have
covered. Those in gray are reachable, and those in dark gray support efficient
access (as we will see in Section 4) and indexing (as we see in Part II of this survey
[Navarro 2020]). An intriguing case is r, which allows for efficient indexing but not
access, as far as we know.

Note that we do not know if γ should be grayed or not, whereas we do know that
δ must not be grayed. The smallest grayed measure is b, which is, by definition,
the best space we can obtain via copying substrings from elsewhere in the string.

Indexing Highly Repetitive String Collections, Part I · 21

bac d c c d a b ac c $

Fig. 10. The only possible, yet invalid, bidirectional macro scheme induced by the explicit posi-

tions Γ = {4, 7, 11, 12, 13} of the attractor Γ of the string S = cdabccdabcca$. We use the same

conventions of Figure 2.

We have shown that every bidirectional macro scheme can be converted into an
attractor of at most the same size, and thus γ ≤ b. The converse is not direct: if we
take the positions of an attractor Γ as the explicit symbols of a bidirectional macro
scheme, and declare that the gaps are the nonexplicit phrases, the result may not
be a valid macro scheme, because it might be impossible to define a target-to-source
function f without cycles.

Example: Figure 10 shows an example of this case [Kempa and Prezza 2018]. The
string S = cdabccdabcca$ has attractor Γ = {4, 7, 11, 12, 13}. The only possible
bidirectional macro scheme with those explicit symbols has the cycle f(3) = f(8) =
f(3), and thus it is not valid.

Still, it could be that one can always add O(γ) explicit symbols to break those
cycles, in which case γ and b would be asymptotically equivalent. Otherwise, if
there are string families where γ = o(b), this still does not mean that we cannot
represent a string S within O(γ) space, but that representation will not consist of
just substring copies.19 To definitely show that not all strings can be represented in
O(γ) space, we should find a string family of common measure γ and of size nω(γ).

As explained, δ log(n/δ) is a reachable measure that is asymptotically optimal
as a function of δ. That is, if we separate the set of all strings into subsets Sδ
where the strings have measure δ, then inside each set there are families that need
Θ(δ log(n/δ)) space to be represented. The measure δ is then optimal in that coarse
sense. Still, we know that b is string-wise better than δ log(n/δ) and sometimes
asymptotically smaller; therefore it is a more refined measure.

3.11.1 Some practical figures. Several direct [Belazzougui et al. 2015; Gagie et al.
2020; Navarro et al. 2021; Russo et al. 2020] and less direct [Mäkinen et al. 2010;
Kreft and Navarro 2013; Claude et al. 2016; Belazzougui et al. 2017] experiments
suggest that in typical repetitive texts it holds that b < z ≈ v < g < r < e, where
“<” denotes a clear difference in magnitude.

Since those experiments have been made on different texts and it is hard to com-
bine them, and because no experiments on δ have been published, Table 1 compares
the measures that can be computed in polynomial time on a sample of repetitive
collections obtained from the Repetitive Corpus of Pizza&Chili20. We include an
upper bound on g obtained by a heuristically balanced RePair algorithm,21 which

19Kutsukake et al. [2020] show that γ ≤ 4 and δ < 10/3 for Thue-Morse words, and conjecture

that b = Θ(logn). If confirmed, it would be the first known strign family with γ = o(b).
20http://pizzachili.dcc.uchile.cl/repcorpus/real
21https://www.dcc.uchile.cl/gnavarro/software/repair.tgz, directory bal/. To further re-
duce the grammar, we removed rules defining nonterminals that were used only once.

22 · G. Navarro

File n bδc z v g r e
cere 461,286,644 1,003,280 1,700,630 1,649,448 4,069,452 11,574,640 35,760,304
escherichia 112,689,515 1,337,977 2,078,512 2,014,012 4,342,874 15,044,487 43,356,169
einstein 467,626,544 42,884 89,467 97,442 212,902 290,238
worldleaders 46,968,181 68,651 175,740 179,696 399,667 573,487
coreutils 205,281,778 636,101 1,446,468 1,439,918 2,409,429 4,684,460
kernel 257,961,616 405,643 793,915 794,058 1,374,651 2,791,367

Table 1. Several repetitiveness measures computed on a sample of the Pizza&Chili repetitive
corpus. We chose two DNA, two natural language, and two source code files.

consistently outperforms other grammar-based compressors, including those that
offer theoretical guarantees of approximation to g. We also build the CDAWG
on the DNA collections, where the code we have allows it22. The table suggests
z ≈ v ≈ 1.5−2.5 · δ, g ≈ 3−6 · δ, r ≈ 7−11 · δ, and e ≈ 32−35 · δ.

4. ACCESSING THE COMPRESSED TEXT AND COMPUTING FINGERPRINTS

The first step beyond mere compression, and towards compressed indexing, is to
provide direct access to the compressed string without having to fully decompress
it. We wish to extract arbitrary substrings S[i . . j] in a time that depends only
polylogarithmically on n. Further, some indexes also need to efficiently compute
Karp-Rabin fingerprints (Section 2.3) of arbitrary substrings.

In this section we cover the techniques and data structures used to provide these
functionalities, depending on the underlying compression method. In all cases, any
substring S[i . . j] can be extracted in time O(j − i+ log n) or less, whereas the fin-
gerprint of any S[i . . j] can be computed in time O(log n) or less. Section 4.1 shows
how this is done in O(g) and even O(grl) space by enriching (run-length) context-
free grammars, whereas Section 4.2 shows how to do this in space O(z log(n/z)),
and even O(δ log(n/δ)), by using so-called block trees. Some indexes require more
restricted forms of access, which those data structures can provide in less time. Sec-
tion 4.3 shows another speedup technique called bookmarking. Finally, Section 4.4
shows a very recent development where the concept of persistent data structures
is used to offer direct access on versioned collections where the edit structure is
known, in space proportional to the base text plus the total amount of edits.

Experimental results [Belazzougui et al. 2021] show that practical access data
structures built on block trees take about the same space as those built on balanced
grammars (created with RePair [Larsson and Moffat 2000]), but block trees grow
faster as soon as the repetitiveness decreases. On the other hand, access on block
trees is over an order of magnitude faster than on grammars.

4.1 Enhanced Grammars

If the compressed string is represented with a context-free grammar of size g or a
run-length grammar of size grl, we can enrich the nonterminals with information
associated with the length of the string they expand to, so as to provide efficient
access within space O(g) or O(grl), respectively.

22https://github.com/mathieuraffinot/locate-cdawg, which works only on the alphabet Σ =

{A,C,G,T}. For escherichia we converted the other symbols to A, and verified that this would
have a negligible impact on the other measures.

Indexing Highly Repetitive String Collections, Part I · 23

For a simple start, let A → X1 · · ·Xk. Then, we store `0 = 0, `1 = `0 + |X1|,
`2 = `1 + |X2|, . . ., `k = `k−1 + |Xk| associated with A. To extract the ith symbol
of exp(A), we look for the predecessor of i in those values, finding j such that
`j−1 < i ≤ `j , and then seek to obtain the i′th symbol ofXj , with i′ = i−`j−1. Since
predecessors can be computed in time O(log logw n) [Belazzougui and Navarro 2015;
Navarro and Rojas-Ledesma 2020], on a grammar of height h we can extract any
S[i] in time O(h log logw n), which is O(log n log logw n) if the grammar is balanced.
If the right-hand sides of the rules are of constant length, then the predecessors take
constant time and the extraction time drops to O(log n), as with the simple method
described in Section 3.4.

Bille et al. [2015] showed how this simple idea can be extended to extract any S[i]
in time O(log n) from arbitrary grammars, not necessarily balanced. They extract
a heavy path [Sleator and Tarjan 1983] from the parse tree of S. A heavy path
starts at the root A → X1 · · ·Xk and continues by the child Xj with the longest
expansion, that is, with maximum |Xj | (breaking ties in some deterministic way),
until reaching a leaf. We store the heavy path separately and remove all its nodes
and edges from the parse tree, which gets disconnected and becomes a forest. We
then repeat the process from each root of the forest until all the nodes are in the
extracted heavy paths.

Consider the path going through a node labeled B in the parse tree, whose last
element is the terminal exp(B)[tB]. We associate with B its start and end values
relative to tB , sB = 1 − tB and eB = |B| − tB , respectively. Note that these
values will be the same wherever B appears in the parse tree, because the heavy
path starting from B will be identical. Further, if C follows B in the heavy path,
then exp(C)[tC] is the same symbol exp(B)[tB]. For a heavy path rooted at A,
the values sB of the nodes we traverse downwards to the leaf, then the zero, and
then the values eB of the nodes we traverse upwards to A again, form an increasing
sequence of positions, PA. The search for S[i] then proceeds as follows. We search
for the predecessor of i − tA in the sequence PA associated with the root symbol
A. Say that B is followed by C downwards in the path and their starting positions
are sB ≤ i − tA < sC , or their ending positions are eC < i − tA ≤ eB . Then the
search for S[i] must continue as the search for i′ = i− tA+ tB inside B, because i is
inside exp(B) but not inside exp(C). With another predecessor search for i′ on the
starting positions `j of the children of B, we find the child Bj by which our search
continues, with i′′ = i′− `j−1. Note that Bj is the root of another heavy path, and
therefore we can proceed recursively.

Example: Figure 11 (left) shows an example for the grammar we used in Figure 4
on our string S = alabaralalabarda$. The first heavy path, extracted from the root,
is C → B → A→ l (breaking ties arbitrarily). From the other B of the parse tree,
which becomes a tree root after we remove the edges of the first heavy path, we extract
another heavy path: B → A → l. The remaining A produces the final heavy path,
A→ l. All the other paths have only one node. Note that tC = 10 and tB = tA = 2,
that is, exp(C)[10] = exp(B)[2] = exp(A)[2] = l is the last element in the heavy
path. Therefore, sC = −9, eC = 7, sB = −1, eB = 4, sA = −1, eA = 0. The `
values for C are 0, 6, 8, 14, 15, 16, 17. To find S[12], we determine that 8 < 12 ≤ 14,
thus we have to descend by B, which follows the heavy path. We then search for

24 · G. Navarro

$ ba d l r

A

B

Cs
C

= −9

A
s = −1

A
e = 0

B
e = 4

C
e = 7

a l b raa a l a a b a r d a $l

A

B B

A A

C

s
B

= −1

Fig. 11. On the left, the heavy path decomposition of the parse tree of Figure 4. Heavy edges

are in black and light edges are in gray. For the heavy path that starts on the root, we box the

last element and show how the values sX and eX of the intermediate nodes are computed. On
the right, the trie storing all the heavy paths.

12 − tC = 2 in the sequence sC , sB , sA, 0, eA, eB , eC = −9,−1,−1, 0, 0, 4, 7 to find
0 < 2 ≤ 4, meaning that we fall between eA = 0 and eB = 4. We thus follow the
search from B, for the new position 12− tC + tB = 4. Since the ` values associated
with B are 0, 2, 3, 4, 5, 6, we descend by a light edge towards the b, which is S[12].

The important property is that, if Xj follows A in the heavy path, then all the
other children Xj′ of A satisfy |Xj′ | ≤ |A|/2, because otherwise Xj′ would have
followed A in the heavy path. Therefore, every time we traverse a light edge to
switch to another heavy path, the length of the expansion of the nonterminal is
halved. As a consequence, we cannot switch more than log n times to another
heavy path in our traversal from the root to the leaf that holds S[i]. Since we
perform two predecessor searches to find the next heavy path, the total extraction
cost is O(log n log logw n), even if the grammar is unbalanced.

Bille et al. [2015] remove the O(log logw n) factor by using a different predecessor
search data structure that, if i falls between positions pj−1 and pj inside a universe
of u positions, then the search takes time O(log(u/(pj − pj−1))). This makes the
successive searches on heavy paths and children telescope to O(log n).

The other problem is that the parse tree has Θ(n) nodes, and thus we cannot
afford storing all the heavy paths. Fortunately, this is not necessary: If Xj is the
child of A with the largest |Xj |, then Xj will follow A in every heavy path where A
appears. We can then store all the heavy paths in a trie where Xj is the parent of
A. Heavy paths are then read as upward paths in this trie, which has exactly one
node per nonterminal and per terminal, the latter being children of the trie root.
The trie then represents all the heavy paths within O(g) space. Bille et al. [2015]
show how an O(g)-space data structure on the trie provides the desired predecessor
searches on upward trie paths.

Example: Figure 11 (right) shows the trie associated with our example parse tree.
Every time B appears in the parse tree, the heavy path continues by A, so A is the
parent of B in the trie.

4.1.1 Extracting substrings. Bille et al. [2015] also show how to extract S[i . . j] in
time O(j − i+ log n). They find the path towards i and the path towards j. These

Indexing Highly Repetitive String Collections, Part I · 25

coincide up to some node in the parse tree, from which they descend by different
children. From there, all the subtrees to the right of the path towards i (from the
deepest to the shallowest), and then all the subtrees to the left of the path towards
j (from the shallowest to the deepest), are fully traversed in order to obtain the
j − i+ 1 symbols of S[i . . j] in optimal time (because they output all the leaves of
the traversed trees, and internal nodes have at least two children).

With a bit more of sophistication, Belazzougui et al. [2015] obtain RAM-optimal
time on the substring length, O((j − i)/ logσ n+ log n), among other tradeoffs. We
note that the O(log n) additive overhead is almost optimal: any structure using
gO(1) space requires Ω(log1−ε n) time to access a symbol, for any constant ε > 0
[Verbin and Yu 2013].

4.1.2 Karp-Rabin fingerprints. An easy way to obtain the Karp-Rabin fingerprint
of any S[i . . j] is to obtain κ(S[1 . . i − 1]) and κ(S[1 . . j]), and then operate them
as sketched in Section 2.3. To compute the fingerprint of a prefix of S, Bille
et al. [2017] store for each A → X1 · · ·Xk the fingerprints κ1 = κ(exp(X1)), κ2 =
κ(exp(X1) · exp(X2)), . . ., κk = κ(exp(X1) · · · exp(Xk)). Further, for each node B
in a heavy path ending at a leaf exp(B)[tB], they store κ(exp(B)[1 . . tB−1]). Thus,
if we have to leave at B a heavy path that starts in A, the fingerprint of the prefix
of exp(A) that precedes exp(B) is obtained by combining κ(exp(A)[1 . . tA−1]) and
κ(exp(B)[1 . . tB − 1]). In our path towards extracting S[i], we can then compose
the fingerprints so as to obtain κ(S[1 . . i − 1]) at the same time. Any fingerprint
κ(S[i . . j]) can therefore be computed in O(log n) time.

Example: In the same example of Figure 11, say we want to compute κ(S[1 . . 11]).
We start with the heavy path that starts at C, which we leave at B. For the
heavy path, we have precomputed κ(exp(C)[1 . . tC − 1]) = κ(alabarala) for C and
κ(exp(B)[1 . . tB − 1]) = κ(a) for B. By operating them, we obtain the fingerprint
of the prefix of exp(C) that precedes exp(B), κ(alabaral). We now descend by the
second child of B. We have also precomputed the fingerprints of the prefixes of
exp(B) corresponding to its children, in particular the first one, κ(exp(A)) = κ(al).
By composing both fingerprints, we have κ(alabaralal) as desired.

4.1.3 Extracting rule prefixes and suffixes in real time. The typical search al-
gorithm of compressed indexes (see Part II) does not need to extract arbitrary
substrings, but only to expand prefixes or suffixes of nonterminals. Gasieniec et al.
[2005] showed how one can extract prefixes or suffixes of any exp(A) in real time,
that is, O(1) per additional symbol. They build a trie similar to that used to store
all the heavy paths, but this time they store leftmost paths (for prefixes) or right-
most paths (for suffixes). That is, if A→ X1 · · ·Xk, then X1 is the parent of A in
the trie of leftmost paths and Xk is the parent of A in the trie of rightmost paths.

Let us consider leftmost paths; rightmost paths are analogous. To extract the
first symbol of exp(A), we go to the root of the trie, descend to the child in the
path to node A, and output its corresponding terminal, a. This takes constant time
with level ancestor queries [Bender and Farach-Colton 2004]. Let B → aB2 · · ·Bs
be the child of a in the path to A (again, found with level ancestor queries from
A). The next symbols are then extracted recursively from B2, . . . , Bs. Once those
are exhausted, we continue with the child of B in the path to A, C → BC2 · · ·Ct,

26 · G. Navarro

and extract C2, . . . , Ct, and so on, until we extract all the desired characters.

4.1.4 Run-length grammars. Christiansen et al. [2020] (App. A) showed how the
results above can be obtained on run-length context-free grammars as well, rela-
tively easily, by regarding the rule A → Xt as A → X · · ·X and managing to use
only O(1) words of precomputed data in order to simulate the desired operations.

4.1.5 All context-free grammars can be balanced. Recently, Ganardi et al. [2019]
proved that every context-free grammar of size g can be converted into another
of size O(g), right-hand sides of size 2, and height O(log n). While the conversion
seems nontrivial at first sight, once it is carried out we need only very simple
information associated with nonterminals to extract any S[i . . j] in time O(j − i+
log n) and to compute any fingerprint κ(S[i . . j]) in time O(log n). It is not known,
however, if run-length grammars can be balanced in the same way.

4.2 Block Trees and Variants

Block trees [Belazzougui et al. 2015] are in principle built knowing the size z of
the Lempel-Ziv parse of S[1 . . n]. Built with a parameter τ , they provide a way to
access any S[i] in time O(logτ (n/z)) with a data structure of size O(zτ logτ (n/z)).
For example, with τ = O(1), the time is O(log(n/z)) and the space is O(z log(n/z)).
Recall that several heuristics build grammars of size g = O(z log(n/z)), and thus
block trees are not asymptotically smaller than structures based on grammars, but
they can be asymptotically faster.

The block tree is of height logτ (n/z). The root has z children, u1, . . . , uz, which
logically divide S into blocks of length n/z, S = Su1

· · ·Suz . Each such node
v = uj has τ children, v1, . . . , vτ , which divide its block Sv into equal parts, Sv =
Sv1 · · ·Svτ . The nodes vi have, in turn, τ children that subdivide their block, and
so on. After slightly less than logτ (n/z) levels, the blocks are of length logσ n, and
can be stored explicitly using log n bits, that is, in constant space.

Some of the nodes v can be removed because their block Sv appears earlier in S.
The precise mechanism is as follows: every consecutive pair of nodes v1, v2 where
the concatenation Sv1 · Sv2 does not appear earlier is marked (that is, we mark v1

and v2). After this, every unmarked node v has an earlier occurrence, so instead of
creating its τ children, we replace v by a leftward pointer to the first occurrence of
Sv in S. This first occurrence spans in general two consecutive nodes v1, v2 at the
same level of v, and these exist and are marked by construction. We then make v
a leaf pointing to v1, v2, also recording the offset where Sv occurs inside Sv1 · Sv2 .

To extract S[i], we determine the top-level node v = uj where i falls and then
extract its corresponding symbol. In general, to extract Sv[i], there are three cases.
(1) If Sv is stored explicitly (i.e., v is a node in the last level), we access Sv[i]
directly. (2) If v has τ children, we determine the corresponding child v′ of v and
the corresponding offset i′ inside Sv′ , and descend to the next level looking for
Sv′ [i

′]. (3) If v points to a pair of nodes v1, v2 to the left, at the same level, then
Sv occurs inside Sv1 ·Sv2 . With the offset information, we translate the query Sv[i]
into a query inside Sv1 or inside Sv2 . Since nodes v1 and v2 are marked, they have
children, so we are now in case (2) and can descend to the next level. Overall, we
do O(1) work per level of the block tree, for a total access time of O(logτ (n/z)).

To see that the space of this structure is O(zτ logτ (n/z)), it suffices to show that

Indexing Highly Repetitive String Collections, Part I · 27

l b raa a l a a b a r d a $la

a

a l b a

l b raa a l a a b a r d a $la

a a r d a $l b a r

Fig. 12. A block tree for S = alabaralalabarda$, starting with 3 nodes, with arity τ = 2, and
stopping on substrings of length 1. Grayed characters are conceptual and not stored; only the

black ones and the pointer structure of the tree are represented. Horizontal pointers are drawn

with curved arrows and the source areas are shown with dashed lines.

there are O(z) marked nodes per level: we charge O(τ) space to the marked nodes
in a level to account for the space of all the nodes in the next level. Note that,
in a given level, there are only z blocks containing Lempel-Ziv phrase boundaries.
Every pair of nodes v1, v2 without phrase boundaries in Sv1 · Sv2 has an earlier
occurrence because it is inside a Lempel-Ziv phrase. Thus, a node v containing a
phrase boundary in Sv may be marked and force its preceding and following nodes
to be marked as well, but all the other nodes are unmarked. In conclusion, there
can be at most 3z marked nodes per level.

Still, the construction is conservative, possibly preserving internal nodes v such
that Sv occurs earlier, and no other node points inside Sv nor inside the block of
a descendant of v. Such nodes are identified and converted into leaves with a final
postorder traversal [Belazzougui et al. 2021].

Example: Figure 12 shows a block tree for S = alabaralalabarda$ (we should start
with z(S) = 11 blocks, but 3 is better to exemplify). To access S[11] we descend by
the second block (Su2

= alalab), accessing Su2
[5]. Since the block has children, we

descend by the second (lab), aiming for its second position. But this block has no
children because its content is replaced by an earlier occurrence of lab. The quest
for the second position of lab then becomes the quest for the third position of ala,
within the first block of the second level. Since this block has children, we descend
to its second child (a), aiming for its first position. This block is explicit, so we
obtain S[11] = a.

4.2.1 Extracting substrings. By storing the first and last logσ n symbols of every
block Sv, a chunk of S of that length can also be extracted in time O(logτ (n/z)):
we traverse the tree as for a single symbol until the paths for the distinct symbols
of the chunk diverge. At this point, the chunk spans more than one block, and thus
its content can be assembled from the prefixes and suffixes stored for the involved
blocks. Therefore, we can extract any S[i . . j] by chunks of logσ n symbols, in time
O((1 + (j − i)/ logσ n) logτ (n/z)).

4.2.2 Karp-Rabin fingerprints. Navarro and Prezza [2019] show, on a slight block
tree variant, that fingerprints of any substring S[i . . j] can be computed in time

28 · G. Navarro

O(logτ (n/z)) by storing some precomputed fingerprints: (1) for every top-level
node uj , κ(Su1

· · ·Suj); (2) for every internal node v with children v1, . . . , vτ ,
κ(Sv1 · · ·Svj) for all j; and (3) for every leaf v pointing leftwards to the occur-
rence of Sv inside Sv1 ·Sv2 , κ(Sv ∩Sv1). Then, by using the composition operations
of Section 2.3, the computation of any prefix fingerprint κ(S[1 . . i]) is translated into
the computation of some κ(Suj [1 . . i

′]), and the computation of any κ(Sv[1 . . i
′]) is

translated into the computation of some κ(Sv′ [1 . . i
′′]) at the same level (at most

once per level) or at the next level.

4.2.3 Other variants. The block tree concept is not as tightly coupled to Lempel-
Ziv parsing as it might seem. Kempa and Prezza [2018] build a similar struc-
ture on top of an attractor Γ of S, of minimal size γ ≤ z. Their structure uses
O(γ log(n/γ)) ⊆ O(z log(n/z)) space and extracts any S[i . . j] in time O((1 + (j −
i)/ logσ n) log(n/γ)). Unlike the block tree, their structure divides S irregularly,
defining blocks as the areas between consecutive attractor positions. We prefer to
describe the so-called Γ-tree [Navarro and Prezza 2019], which is more similar to a
block tree and more suitable for indexing.

The Γ-tree starts with γ top-level nodes (i.e., in level 0), each representing a block
of length n/γ of S. The nodes of level l represent blocks of length bl = n/(γ · 2l).
At each level l, every node whose block is at distance less than bl from an attractor
position is marked. Marked nodes point to their two children in the next level,
whereas unmarked nodes v become leaves pointing to a pair of nodes v1, v2 at the
same level, where Sv occurs inside Sv1 ·Sv2 and the occurrence contains an attractor
position. Because of our marking rules, nodes v1, v2 exist and are marked.

It is easy to see that the Γ-tree has height log(n/γ), at most 3γ marked nodes per
level, and that it requires O(γ log(n/γ)) space. This space is better than the classi-
cal block tree because γ ≤ z. The Γ-tree can retrieve any S[i] in time O(log(n/γ))
and can be enhanced to match the substring extraction time of Kempa and Prezza
[2018]. As mentioned, they can also compute Karp-Rabin fingerprints of substrings
of S in time O(log(n/γ)).

Recently, Kociumaka et al. [2020, 2021] showed that the original block tree is eas-
ily tuned to use O(δτ logτ (n/δ)) ⊆ O(zτ logτ (n/z)) space (recall that δ ≤ γ ≤ z).
The only change needed is to start with δ top-level blocks. It can then be seen that
there are only O(δ) marked blocks per level (though the argument is more complex
than the previous ones). The tree height is O(logτ (n/δ)), higher than the block
tree. However, from z = O(δ log(n/δ)), they obtain that log(n/δ) = O(log(n/g)),
and therefore the difference in query times is not asymptotically relevant.

4.3 Bookmarking

Gagie et al. [2012] combine grammars with Lempel-Ziv parsing to speed up string
extraction over (Lempel-Ziv) phrase prefixes and suffixes, and Gagie et al. [2014]
extend the result to fingerprinting. We present the ideas in simplified form and on
top of the stronger concept of attractors.

Assume we have split S somehow into t phrases, and let Γ be an attractor on S, of
size γ. Using a structure from Sections 4.1 or 4.2, we provide access to any substring
S[i . . i+ `] in time O(`+ log n), and computation of its Karp-Rabin fingerprint in
time O(log n). Bookmarking enables, within O((t + γ) log log n) additional space,

Indexing Highly Repetitive String Collections, Part I · 29

the extraction of phrase prefixes and suffixes in time O(`) and their fingerprint
computation in time O(log `).

Let us first handle extraction. We consider only the case ` ≤ log n, since otherwise
O(`+log n) is already O(`). We build a string S′[1 . . n′] by collecting all the symbols
of S that are at distance at most log n from an attractor position. It then holds
that n′ = O(γ log n), and every phrase prefix or suffix of S of length up to log n
appears in S′, because it has a copy in S that includes a position of Γ. By storing
a pointer from each of the t phrase prefixes or suffixes to a copy in S′, using O(t)
space, we can focus on extracting substrings from S′.

An attractor Γ′ on S′ can be obtained by projecting the positions of Γ. Further,
if the area between two attractor positions in Γ is longer than 2 log n, its prefix
and suffix of length log n are concatenated in S′. In that case we add the middle
position to Γ′, to cover the possibly novel substrings. Then, Γ′ has a position every
(at most) log n symbols of S′, and it is an attractor of size γ′ ≤ 2γ for S′.

Example: Consider the attractor Γ = {4, 6, 7, 8, 15, 17} of S = ala b a r a l alabar d a $
(the boxed symbols are the attractor positions). Let us replace log n by 2 for the
sake of the example. It then holds that S′ = labaralalarda$. The attractor we
build for Γ′ includes the positions {3, 5, 6, 7, 12, 14}, projected from Γ. In addi-
tion, since some middle symbols of the area S[9 . . 14] = alabar are removed and
it becomes S′[8 . . 11] = alar, we add one more attractor in the middle, to obtain

Γ′ = {3, 5, 6, 7, 10, 12, 14}, that is, S′ = la b a r a l al a r d a $.

As mentioned at the end of Section 3.9, we can build a run-length grammar of size
O(γ′ log(n′/γ′)) = O(γ log log n) on S′ (Christiansen et al. [2020] do this without
finding the attractor, which would be NP-hard). This grammar is, in addition,
locally balanced, that is, every nonterminal whose parse tree node has l leaves is of
height O(log l).

Assume we want to extract a substring S′[i′ . . i′ + 2k] for some fixed i′ and
0 ≤ k ≤ log log n. We may store the lowest common ancestor u in the parse tree of
the i′th and (i′ + 2k)th leaves. Let v and w be the children of u that are ancestors
of those two leaves, respectively. Let jv be the rank of the rightmost leaf of v and
jw that of the leftmost leaf of w. Thus, we have i′ ≤ jv < jw ≤ i′+2k. This implies
that, if v′ and w′ are, respectively, the lowest common ancestors of the leaves with
rank i′ and jv, and with rank jw and i′+2k, then v′ descends from v and w′ descends
from w, and both v′ and w′ are of height O(log 2k) = O(k) because the grammar
is locally balanced. We can then extract S[i′ . . i′ + 2k] by extracting the jv − i′ + 1
rightmost leaves of v′ by a simple traversal from the right, in time O(jv − i′ + k),
then the whole children of u that are between v and w, in time O(2k), and finally
the i′+ 2k − jw + 1 leftmost leaves of w′, in time O(i′+ 2k − jw + k), with a simple
traversal from the left. All this adds up to O(2k) work. See Figure 13.

We store the desired information on the nodes v′ and w′ for every position S′[i′]
to which a phrase beginning S[i] is mapped. Since this is stored for every value
k, we use O(t log log n) total space. To extract S′[i′ . . i′ + `] for some 0 ≤ ` ≤
log n, we choose k = dlog `e and extract the substring in time O(2k) = O(`). The
arrangement for phrase suffixes is analogous.

Similarly, we can compute the Karp-Rabin signature of S′[i′ . . i′ + `] by storing
the signature for every nonterminal, and combine the signatures of (1) the O(k) =

30 · G. Navarro

w

u

v

jv jw i +2
k

. . . .

v
w

’
’

i’

Fig. 13. Illustration of the bookmarking technique.

O(log `) subtrees that cover the area between S′[i′] and S′[jv], (2) the children of
u between v and w (if any), and (3) the O(k) = O(log `) subtrees that cover the
area between S′[jw] and S′[i′ + `] (if any). (If i′ + ` < jw, we only combine the
O(log `) subtrees that cover the area between S′[i′] and S[i′+ `].) This can be done
in O(log `) time, recall Section 4.1.2.

4.4 Persistent Strings

Various repetitive collections consist of a sequence of versions of a base document,
where each version differs from the previous one in a few “edits” (symbol insertions,
deletions, or substitutions). Branching in the versions is also possible, so that we
have a tree of versions where each version differs from its parent in a few edits.
This can be addressed with persistent data structures [Driscoll et al. 1989], which
allow updates but can be accessed as they were at any point in the past. Partial
persistence allows updates only in the current version, and thus can model version
sequences; full persistence allows updating any version and enables version trees.

The basic results of Driscoll et al. [1989] allow one to represent a fully-persistent
balanced binary search tree of t leaves in O(t) space, and then apply each update
persistently by creating only one new path from the root to the affected node. The
pointers sprouting from this path lead to the previous version’s subtrees, and the
root of the new path becomes the root of the new version. In this way, performing
s updates take O(s log(t+ s)) additional space, and the operations are carried out
in time O(log(t+ s)). The total space can be reduced to O(t+ s) with more careful
binary tree implementations [Driscoll et al. 1989; Sarnak and Tarjan 1986].

If we use such a fully-persistent balanced tree to represent the symbols of a base
document at its leaves, then we can represent the edit operations as updates to the
tree. Maintaining the number of leaves that descend from any node leads us to any
desired string position. A base document of length t on which s edit operations
are carried out along all its versions is then represented in O(t + s) space, and it
supports edits and access to individual symbols in time O(log(t+ s)).

Recently, Bille and Gørtz [2020] showed how to improve the access time on per-
sistent strings to O(log(t+ s)/ log log(t+ s)), on a model where they start with the
empty string (so one can build the first string via t insertions). Further, they can
extract a substring of length ` in O(`) additional time. They use O(t + s) space

Indexing Highly Repetitive String Collections, Part I · 31

and show that their time is optimal for any space in O((t+ s) polylog (t+ s)).
This result, which makes use of the particular structure of the repetitiveness, is

not directly obtained with the general techniques we have covered. For example,
it is easy to see that, processing this versioned collection from the beginning, we
obtain zno = O(t/ logσ t + s) Lempel-Ziv phrases, even without overlaps. It is
unknown, however, if one can provide direct access within O(zno) space in general.
We can provide logarithmic access time by using space that is in general larger
than O(t+ s). For example, we can use the block trees of Section 4.2, which would
use space O(δ log(n/δ)) ⊆ O((t/ logσ t + s) log(s logσ t)), because n ≤ (t + s)s and
δ ≤ zno. We can also use grammars. One of size O(t/ logσ t + s log(t + s)) can be
obtained as follows [Navarro 2019]: First, we build a nonterminal A0 expanding to
the original text (the grammar is of size O(t/ logσ t) up to here); then, for each new
version i that applies si edits to version j, produce the nonterminal Ai expanding
to version i by copying the parse tree of Aj and modifying the paths to those edits.
The grammar trees of all those nonterminals Ai add up to O(s log(t+ s)) nodes.

5. OPEN QUESTIONS

Various questions about the relations between the repetitiveness measures in Fig-
ure 9 remain open. In this line, perhaps the most important open question from
Part I of this survey is the following:

What is the smallest reachable and computable measure of repetitiveness?

Like Shannon’s entropy is a lower bound when we decide to exploit only fre-
quencies, bidirectional macro schemes are a lower bound when we decide to exploit
only string copies. Still, there may be some useful repetitiveness measure between
b and the bottom line of the (uncomputable) Kolmogorov complexity. A suitable
candidate could be γ, though we conjecture that it is not reachable.

Other equally fascinating questions can be asked about accessing and indexing:

What is the smallest reachable measure under which
we can access and/or index the strings efficiently?

For now, O(grl) is the best known limit for efficient access; it is unknown if
one can access S[i] efficiently within O(zno) or O(r) space. Indexing can also be
supported within O(grl) space, but also in O(r); we do not know if this is possible
within O(zno) or O(v) space. Part II of this survey [Navarro 2020] focuses on how
indexing is built on top of direct access.

Acknowledgements

We thank Travis Gagie, Nicola Prezza, and the reviewers for useful comments.

REFERENCES

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 85–96.

Belazzougui, D., Cáceres, M., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Navarro,
G., Ordóñez, A., Puglisi, S. J., and Tabei, Y. 2021. Block trees. Journal of Computer

and System Sciences 117, 1–22.

32 · G. Navarro

Belazzougui, D. and Cunial, F. 2017. Representing the suffix tree with the CDAWG. In Proc.

28th Annual Symposium on Combinatorial Pattern Matching (CPM). 7:1–7:13.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., and Raffinot, M. 2015. Compos-
ite repetition-aware data structures. In Proc. 26th Annual Symposium on Combinatorial

Pattern Matching (CPM). 26–39.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., and Raffinot, M. 2017. Flexible

indexing of repetitive collections. In Proc. 13th Conference on Computability in Europe

(CiE). 162–174.

Belazzougui, D., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Ordóñez, A., Puglisi,

S. J., and Tabei, Y. 2015. Queries on LZ-bounded encodings. In Proc. 25th Data Com-

pression Conference (DCC). 83–92.

Belazzougui, D. and Navarro, G. 2015. Optimal lower and upper bounds for representing

sequences. ACM Transactions on Algorithms 11, 4, article 31.

Belazzougui, D., Puglisi, S. J., and Tabei, Y. 2015. Access, rank, select in grammar-
compressed strings. In Proc. 23rd Annual European Symposium on Algorithms (ESA).

142–154.

Bell, T. C., Cleary, J., and Witten, I. H. 1990. Text Compression. Prentice Hall.

Bender, M. and Farach-Colton, M. 2004. The level ancestor problem simplified. Theoretical

Computer Science 321, 1, 5–12.

Bentley, J., Gibney, D., and Thankachan, S. V. 2019. On the complexity of BWT-runs

minimization via alphabet reordering. CoRR 1911.03035.

Bille, P., Gagie, T., Gørtz, I. L., and Prezza, N. 2018. A separation between RLSLPs and
LZ77. Journal of Discrete Algorithms 50, 36–39.

Bille, P., Gørtz, I. L., Cording, P. H., Sach, B., Vildhøj, H. W., and Vind, S. 2017.

Fingerprints in compressed strings. Journal of Computer and System Sciences 86, 171–
180.

Bille, P. and Gørtz, I. L. 2020. Random access in persistent strings. CoRR 2006.15575.

Bille, P., Landau, G. M., Raman, R., Sadakane, K., Rao, S. S., and Weimann, O.
2015. Random access to grammar-compressed strings and trees. SIAM Journal on Com-

puting 44, 3, 513–539.

Blumer, A., Blumer, J., Haussler, D., McConnell, R. M., and Ehrenfeucht, A. 1987.
Complete inverted files for efficient text retrieval and analysis. Journal of the ACM 34, 3,

578–595.

Burrows, M. and Wheeler, D. 1994. A block sorting lossless data compression algorithm.

Tech. Rep. 124, Digital Equipment Corporation.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A., Sahai,
A., and Shelat, A. 2002. Approximating the smallest grammar: Kolmogorov complexity in
natural models. In Proc. 34th Annual ACM Symposium on Theory of Computing (STOC).

792–801.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., and

Shelat, A. 2005. The smallest grammar problem. IEEE Transactions on Information

Theory 51, 7, 2554–2576.

Christiansen, A. R., Ettienne, M. B., Kociumaka, T., Navarro, G., and Prezza, N. 2020.

Optimal-time dictionary-compressed indexes. ACM Transactions on Algorithms 17, 1, ar-

ticle 8.

Claude, F., Fariña, A., Mart́ınez-Prieto, M., and Navarro, G. 2016. Universal indexes for

highly repetitive document collections. Information Systems 61, 1–23.

Cover, T. and Thomas, J. 2006. Elements of Information Theory, 2nd ed. Wiley.

Crochemore, M., Iliopoulos, C. S., Kubica, M., Rytter, W., and Waleń, T. 2012. Efficient
algorithms for three variants of the LPF table. Journal of Discrete Algorithms 11, 51–61.

Dinklage, P., Fischer, J., Köppl, D., Löbel, M., and Sadakane, K. 2017. Compression

with the tudocomp framework. In Proc. 16th International Symposium on Experimental

Algorithms (SEA).

Indexing Highly Repetitive String Collections, Part I · 33

Driscoll, J., Sarnak, N., Sleator, D., and Tarjan, R. E. 1989. Making data structures

persistent. Journal of Computer and System Sciences 38, 86–124.

Elsayed, T. and Oard, D. W. 2006. Modeling identity in archival collections of email: A

preliminary study. In Proc. 3rd Conference on Email and Anti-Spam (CEAS).

Farach, M. and Thorup, M. 1998. String matching in Lempel-Ziv compressed strings. Algo-

rithmica 20, 4, 388–404.

Ferragina, P., Giancarlo, R., Manzini, G., and Sciortino, M. 2005. Boosting textual
compression in optimal linear time. Journal of the ACM 52, 4, 688–713.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 52, 4,
552–581.

Fischer, J., I, T., Köppl, D., and Sadakane, K. 2018. Lempel-Ziv factorization powered by
space efficient suffix trees. Algorithmica 80, 7, 2048–2081.

Fritz, M. H.-Y., Leinonen, R., Cochrane, G., and Birney, E. 2011. Efficient storage of high

throughput DNA sequencing data using reference-based compression. Genome Research,
734–740.

Gagie, T. 2006. Large alphabets and incompressibility. Information Processing Letters 99, 6,
246–251.

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J. 2012. A

faster grammar-based self-index. In Proc. 6th International Conference on Language and
Automata Theory and Applications (LATA). 240–251.

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J. 2014. LZ77-
based self-indexing with faster pattern matching. In Proc. 11th Latin American Symposium

on Theoretical Informatics (LATIN). 731–742.

Gagie, T., Navarro, G., and Prezza, N. 2018. On the approximation ratio of Lempel-Ziv

parsing. In Proc. 13th Latin American Symposium on Theoretical Informatics (LATIN).

490–503.

Gagie, T., Navarro, G., and Prezza, N. 2020. Fully-functional suffix trees and optimal text

searching in BWT-runs bounded space. Journal of the ACM 67, 1, article 2.

Gallant, J. K. 1982. String compression algorithms. Ph.D. thesis, Princeton University.

Ganardi, M., Jeż, A., and Lohrey, M. 2019. Balancing straight-line programs. In Proc. 60th
IEEE Annual Symposium on Foundations of Computer Science (FOCS). 1169–1183.

Gasieniec, L., Karpinski, M., Plandowski, W., and Rytter, W. 1996. Efficient algo-

rithms for Lempel-Ziv encoding. In Proc. 5th Scandinavian Workshop on Algorithm Theory
(SWAT). 392–403.

Gasieniec, L., Kolpakov, R., Potapov, I., and Sant, P. 2005. Real-time traversal in
grammar-based compressed files. In Proc. 15th Data Compression Conference (DCC). 458–

458.

Gawrychowski, P. 2011. Pattern matching in Lempel-Ziv compressed strings: Fast, simple,

and deterministic. In Proc. 19th Annual European Symposium on Algorithms (ESA). 421–

432.

Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., and Toffanello, A. 2020.

Novel results on the number of runs of the Burrows-Wheeler-Transform. CoRR 2008.08506.

Gog, S., Kärkkäinen, J., Kempa, D., Petri, M., and Puglisi, S. J. 2019. Fixed block

compression boosting in FM-indexes: Theory and practice. Algorithmica 81, 4, 1370–1391.

Henzinger, M. R. 2006. Finding near-duplicate web pages: A large-scale evaluation of algo-
rithms. In Proc. 29th Annual International ACM Conference on Research and Development

in Information Retrieval (SIGIR). 284–291.

Hucke, D., Lohrey, M., and Reh, C. P. 2016. The smallest grammar problem revisited.

In Proc. 23rd International Symposium on String Processing and Information Retrieval
(SPIRE). 35–49.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium on
Foundations of Computer Science (FOCS). 549–554.

Jeż, A. 2015. Approximation of grammar-based compression via recompression. Theoretical

Computer Science 592, 115–134.

34 · G. Navarro

Jeż, A. 2016. A really simple approximation of smallest grammar. Theoretical Computer Sci-

ence 616, 141–150.

Kapser, C. and Godfrey, M. W. 2005. Improved tool support for the investigation of dupli-

cation in software. In Proc. 21st IEEE International Conference on Software Maintenance

(ICSM). 305–314.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. 2012. Slashing the time for BWT inversion.

In Proc. 22nd Data Compression Conference (DCC). 99–108.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. 2016. Lazy Lempel-Ziv factorization algo-

rithms. ACM Journal of Experimental Algorithmics 21, 1, 2.4:1–2.4:19.

Kärkkäinen, J. and Puglisi, S. J. 2010. Medium-space algorithms for inverse BWT. In Proc.

18th Annual European Symposium on Algorithms (ESA). 451–462.

Kärkkäinen, J., Sanders, P., and Burkhardt, S. 2006. Linear work suffix array construction.

Journal of the ACM 53, 6, 918–936.

Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development 2, 249–260.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. 2001. Linear-time longest-

common-prefix computation in suffix arrays and its applications. In Proc. 12th Annual
Symposium on Combinatorial Pattern Matching (CPM). 181–192.

Kempa, D. and Kociumaka, T. 2020. Resolution of the Burrows-Wheeler Transform conjecture.
In Proc. 61st IEEE Symposium on Foundations of Computer Science (FOCS). 1002–1013.

Kempa, D. and Prezza, N. 2018. At the roots of dictionary compression: String attractors. In
Proc. 50th Annual ACM Symposium on the Theory of Computing (STOC). 827–840.

Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., and Arikawa, S.
2003. Collage system: A unifying framework for compressed pattern matching. Theoretical

Computer Science 298, 1, 253–272.

Kieffer, J. C. and Yang, E.-H. 2000. Grammar-based codes: A new class of universal lossless

source codes. IEEE Transactions on Information Theory 46, 3, 737–754.

Kim, D. K., Sim, J. S., Park, H., and Park, K. 2005. Constructing suffix arrays in linear time.

Journal of Discrete Algorithms 3, 2-4, 126–142.

Ko, P. and Aluru, S. 2005. Space efficient linear time construction of suffix arrays. Journal

of Discrete Algorithms 3, 2-4, 143–156.

Kociumaka, T., Navarro, G., and Prezza, N. 2020. Towards a definitive measure of repeti-

tiveness. In Proc. 14th Latin American Symposium on Theoretical Informatics (LATIN).

207–219.

Kociumaka, T., Navarro, G., and Prezza, N. 2021. Towards a definitive compressibility

measure for repetitive sequences. CoRR 1910.02151.

Kolmogorov, A. N. 1965. Three approaches to the quantitative definition of information.

Problems on Information Transmission 1, 1, 1–7.

Kosaraju, R. and Manzini, G. 2000. Compression of low entropy strings with Lempel-Ziv

algorithms. SIAM Journal on Computing 29, 3, 893–911.

Kreft, S. and Navarro, G. 2013. On compressing and indexing repetitive sequences. Theo-

retical Computer Science 483, 115–133.

Kutsukake, K., Matsumoto, T., Nakashima, Y., Inenaga, S., Bannai, H., and Takeda,

M. 2020. On repetitiveness measures of Thue-Morse words. In Proc. 27th International
Symposium on String Processing and Information Retrieval (SPIRE). 213–220.

Larsson, J. and Moffat, A. 2000. Off-line dictionary-based compression. Proceedings of the
IEEE 88, 11, 1722–1732.

Lempel, A. and Ziv, J. 1976. On the complexity of finite sequences. IEEE Transactions on

Information Theory 22, 1, 75–81.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding.

Nordic Journal of Computing 12, 1, 40–66.

Mäkinen, V., Navarro, G., Sirén, J., and Välimäki, N. 2010. Storage and retrieval of highly

repetitive sequence collections. Journal of Computational Biology 17, 3, 281–308.

Indexing Highly Repetitive String Collections, Part I · 35

Manber, U. and Myers, G. 1993. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing 22, 5, 935–948.

Mantaci, S., Restivo, A., Romana, G., Rosone, G., and Sciortino, M. 2021. A combinato-

rial view on string attractors. Theoretical Computer Science 850, 236–248.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3,
407–430.

McCreight, E. 1976. A space-economical suffix tree construction algorithm. Journal of the

ACM 23, 2, 262–272.

Navarro, G. 2016. Compact Data Structures – A practical approach. Cambridge University

Press.

Navarro, G. 2019. Document listing on repetitive collections with guaranteed performance.

Theoretical Computer Science 777, 58–72.

Navarro, G. 2020. Indexing highly repetitive string collections, Part II: Compressed indexes.

ACM Computing Surveys. To appear.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, article 2.

Navarro, G. and Prezza, N. 2019. Universal compressed text indexing. Theoretical Computer

Science 762, 41–50.

Navarro, G., Prezza, N., and Ochoa, C. 2021. On the approximation ratio of ordered pars-

ings. IEEE Transactions on Information Theory 67, 2, 1008–1026.

Navarro, G. and Rojas-Ledesma, J. 2020. Predecessor search. ACM Computing Sur-

veys 53, 5, article 105.

Nevill-Manning, C., Witten, I., and Maulsby, D. 1994. Compression by induction of hier-

archical grammars. In Proc. 4th Data Compression Conference (DCC). 244–253.

Nishimoto, T., I, T., Inenaga, S., Bannai, H., and Takeda, M. 2016. Fully dynamic data
structure for LCE queries in compressed space. In Proc. 41st International Symposium on

Mathematical Foundations of Computer Science (MFCS). 72:1–72:15.

Nishimoto, T. and Tabei, Y. 2019. LZRR: LZ77 parsing with right reference. In Proc. 29th
Data Compression Conference (DCC). 211–220.

Ochoa, C. and Navarro, G. 2019. Repair and all irreducible grammars are upper bounded by
high-order empirical entropy. IEEE Transactions on Information Theory 65, 5, 3160–3164.

Prezza, N. 2016. Compressed computation for text indexing. Ph.D. thesis, University of Udine.

Przeworski, M., Hudson, R. R., and Rienzo, A. D. 2000. Adjusting the focus on human
variation. Trends in Genetics 16, 7, 296–302.

Raskhodnikova, S., Ron, D., Rubinfeld, R., and Smith, A. D. 2013. Sublinear algorithms
for approximating string compressibility. Algorithmica 65, 3, 685–709.

Rodeh, M., Pratt, V. R., and Even, S. 1981. Linear algorithm for data compression via
string matching. Journal of the ACM 28, 1, 16–24.

Rubin, F. 1976. Experiments in text file compression. Communications of the ACM 19, 11,

617–623.

Russo, L. M. S., Correia, A., Navarro, G., and Francisco, A. P. 2020. Approximating

optimal bidirectional macro schemes. In Proc. 30th Data Compression Conference (DCC).

153–162.

Rytter, W. 2003. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theoretical Computer Science 302, 1-3, 211–222.

Sakamoto, H. 2005. A fully linear-time approximation algorithm for grammar-based compres-

sion. Journal of Discrete Algorithms 3, 2–4, 416–430.

Sarnak, N. and Tarjan, R. E. 1986. Planar point location using persistent search trees.
Communications of the ACM 29, 7, 669–679.

Shannon, C. E. 1948. A mathematical theory of communication. Bell Systems Technical Jour-
nal 27, 398–403.

Sleator, D. D. and Tarjan, R. E. 1983. A data structure for dynamic trees. Journal of

Computer and System Sciences 26, 3, 362–391.

36 · G. Navarro

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Chenxiang, Z., Efron, M. J.,

Iyer, R., Sinha, S., and Robinson, G. E. 2015. Big data: Astronomical or genomical?

PLoS Biology 17, 7, e1002195.

Storer, J. A. and Szymanski, T. G. 1982. Data compression via textual substitution. Journal

of the ACM 29, 4, 928–951.

Tao, K., Abel, F., Hauff, C., Houben, G., and Gadiraju, U. 2013. Groundhog day: Near-

duplicate detection on Twitter. In Proc. 22nd International World Wide Web Conference
(WWW). 1273–1284.

Verbin, E. and Yu, W. 2013. Data structure lower bounds on random access to grammar-

compressed strings. In Proc. 24th Annual Symposium on Combinatorial Pattern Matching
(CPM). 247–258.

Weiner, P. 1973. Linear pattern matching algorithms. In Proc. 14th IEEE Symposium on

Switching and Automata Theory (FOCS). 1–11.

Witten, I. H., Neal, R. M., and Cleary, J. G. 1987. Arithmetic coding for data compression.

Communications of the ACM 30, 520–540.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23, 3, 337–343.

