
COMPRESSION OF LOW ENTROPY STRINGS WITH LEMPEL–ZIV
ALGORITHMS∗

S. RAO KOSARAJU† AND GIOVANNI MANZINI‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 893–911

Abstract. We compare the compression ratio of the Lempel–Ziv algorithms with the empirical
entropy of the input string. This approach makes it possible to analyze the performance of these
algorithms without any assumption on the input and to obtain worst case results. We show that
in this setting the standard definition of optimal compression algorithm is not satisfactory. In fact,
although Lempel–Ziv algorithms are optimal according to the standard definition, there exist families
of low entropy strings which are not compressed optimally. More precisely, the compression ratio
achieved by LZ78 (resp., LZ77) can be much higher than the zeroth order entropy H0 (resp., the first
order entropy H1).

For this reason we introduce the concept of λ-optimal algorithm. An algorithm is λ-optimal
with respect to Hk if, loosely speaking, its compression ratio is asymptotically bounded by λ times
the kth order empirical entropy Hk. We prove that LZ78 cannot be λ-optimal with respect to any
Hk with k ≥ 0. Then, we describe a new algorithm which combines LZ78 with run length encoding
(RLE) and is 3-optimal with respect to H0. Finally, we prove that LZ77 is 8-optimal with respect to
H0, and that it cannot be λ-optimal with respect to Hk for any k ≥ 1.

Key words. data compression, Lempel–Ziv parsing, empirical entropy

AMS subject classifications. 68Q25, 68P20

PII. S0097539797331105

1. Introduction. The most widely used data compression algorithms are based
on the well known procedures LZ77 and LZ78 [23, 24]. These procedures compress the
input string by replacing phrases with a pointer to a previous occurrence of the same
phrase. This simple scheme achieves a good compression ratio and both coding and
decoding can be done on-line very efficiently.

Given the practical relevance of Lempel–Ziv algorithms, many efforts have been
done to analyze their performance. In [23] it is shown that LZ77 is optimal for a
certain family of sources, and in [24] it is shown that LZ78 achieves asymptotically
the best compression ratio attainable by a finite-state compressor. Other results have
been obtained assuming that the input string is a random sequence {Xi}+∞−∞ which is
stationary, ergodic, and takes values from a finite alphabet. Under these hypotheses,
it has been shown that LZ77 and LZ78 are optimal, that is, their compression rate
approaches the entropy of the random sequence [16, 20, 24]. Similar results have been
obtained also for other variants of the Lempel–Ziv algorithms [2, 10, 18, 19, 22] and
considering different probability distributions for the input string [6, 8].

∗Received by the editors December 8, 1997; accepted for publication (in revised form) December
16, 1998; published electronically December 15, 1999. A preliminary version of this paper appeared
in the Proceedings of the Symposium on Compression and Complexity of Sequences (SEQUENCES),
Positano, Italy, IEEE Computer Society, Los Alamitos, CA, 1997.

http://www.siam.org/journals/sicomp/29-3/33110.html
†Department of Computer Science, Johns Hopkins University, Baltimore, MD (kosaraju@

cs.jhu.edu). The work of this author was supported by NSF under grant CCR-9508545 and ARO
under grant DAAH04-96-1-0013.
‡Dip. Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, I-15100 Alessandria,

Italy, and Istituto di Matematica Computazionale, CNR, Pisa, Italy (manzini@mfn.al.unipmn.it).
The work of this author was supported by a CNR short term fellowship and by MURST 40% and
60% funds. Part of this work was done when the author was visiting the Department of Computer
Science of the Johns Hopkins University, Baltimore, MD.

893

894 S. RAO KOSARAJU AND GIOVANNI MANZINI

More recently, a careful analysis of the Lempel–Ziv parsing rules (see, for exam-
ple, [7, 17, 21]) and the use of renewal theory have made it possible to estimate the
redundancy of Lempel–Ziv algorithms, that is, the amount by which the expected com-
pression ratio exceeds the entropy of the source (the redundancy is therefore a measure
of the speed at which the compression ratio approaches the entropy). In [9, 14] it is
shown that for LZ78 and many of its variants the redundancy is O

(
(logn)−1

)
, where

n is the length of the input string. In [15] it is shown that for two variants of LZ77
the redundancy is O(log logn/ logn). Note that for both families of algorithms we
also have bounds on the size of the constants hidden in the big-o notation. Finally,
in [21] it is shown that for the fixed database version of LZ78 the redundancy is lower
bounded by Ω(log logn/ logn).

Although these results have great theoretical value, they are not completely sat-
isfying since the same string s can be generated by ergodic sources with different
entropies. In addition, most of these results do not hold for every string but only in
the average case or for a set of strings which has probability one in the underlying
probabilistic model.

In order to get results which hold for every string, in this paper we analyze the
performance of the Lempel–Ziv algorithms under a different perspective. Instead of
making assumptions on the input, we consider the so-called empirical entropy which
is based on a probability distribution defined implicitly by the input string. More
precisely, for any string s, we define the kth order entropy Hk(s) by looking at the
number of occurrences of each symbol following each k-length substring inside s. We
say that an algorithm is coarsely optimal if, for all k, there exists a function fk, with
limn→∞ fk(n) = 0, such that for any string s the compression ratio ρ(s) is bounded
by

ρ(s) ≤ Hk(s) + fk(|s|).(1)

In other words, an algorithm is coarsely optimal if its compression ratio differs from
Hk(s) by a quantity which depends only on the length |s| and vanishes as |s| → ∞.
The coarse optimality of LZ78 has been proven by Plotnik et al. [11, Corollary 3] and
in section 4 we show that LZ77 is coarsely optimal as well.

Having defined optimality using (1), we can analyze an important phenomenon
which went undetected using the previous approaches. If a string s is such that
lim|s|→∞Hk(s) = 0, it is possible that (1) holds with a function fk such that Hk(s) =
o(fk(|s|)). Hence, we could have a coarsely optimal algorithm with a compression
ratio much higher than the entropy. To avoid this counterintuitive phenomenon, it
is natural to require that the function fk is such that fk(|s|) = o(Hk(s)). Unfortu-
nately, it is possible to prove that, even for k = 0, neither LZ78 nor LZ77 is optimal
according to this more satisfactory definition (Lemmas 3.1 and 4.7). For this reason
we introduce the concept of λ-optimality with respect to the kth order entropy Hk.
Loosely speaking, the compression ratio of a λ-optimal algorithm must be bounded
by λHk(s) + o(Hk(s)). Therefore, a λ-optimal algorithm is guaranteed to compress
efficiently also the low entropy strings, that is, those strings such that Hk(s)→ 0.

In this paper we prove that LZ78 cannot be λ-optimal with respect to any Hk

with k ≥ 0. This is not surprising since it is well known that LZ78 is not able to
compress efficiently long runs of identical symbols. Then, we describe an algorithm
which combines LZ78 with RLE which is 3-optimal with respect to H0. Finally, we
prove that LZ77 is 8-optimal with respect to H0, and that it cannot be λ-optimal with
respect to Hk for any k ≥ 1. Our techniques are of general interest since they rely on

COMPRESSION OF LOW ENTROPY STRINGS 895

properties of LZ78 and LZ77 which are shared by other compression algorithms based
on parsing such as LZW, LZC, and LZSS (see [1, 13] for a description of these variants).

In [14, 15] Savari analyzes several variants of LZ78 and LZ77 and compares their
output size to the empirical entropy of the string. For the compression ratio of these al-
gorithms Savari proves a bound of the form g

(
k, |s|, Hk(s)

)
Hk(s)+lower order terms.

The function g is given explicitly for each algorithm, and additional bounds are given
for the case Hk(s) = 0. The analysis is not limited to the case in which each symbol
depends on the k previous symbols, but considers also more general models. How-
ever, the results in [14, 15] are valid only if Hk(s)/|s| is bounded away from zero and
therefore do not apply to the low entropy strings. For this reason these bounds com-
plement the coarse optimality results for LZ78 and LZ77, but are not directly related
with the concept of λ-optimality, which is mainly concerned with the compression of
the low entropy strings.

The results of this paper do not aim to substitute results based on probabilistic
assumptions. The latter are very deep and rich and they provide information also for
the nonprobabilistic setting (see, for example, the results on the empirical entropy
in [11, 14, 15]). One of the merits of our worst case analysis is that, as we will see, it
provides new insight on Lempel–Ziv algorithms by revealing strengths and weaknesses
which cannot be properly analyzed in the probabilistic setting.

2. Definitions and notation. Let s be a string of length n over the alphabet
A = {α1, . . . , αh}, and let ni denote the number of occurrences of the symbol αi
inside s. We define the zeroth order entropy as

H0(s) = −
h∑
i=1

ni
n

log
(ni
n

)
,

where we assume 0 log 0 = 0. The value |s|H0(s) represents the output size of an ideal
compressor which uses − log ni

n bits for coding the symbol αi. Although, as we will
see, it is by no means easy to compress a string up to its zeroth order entropy, often
even this is not enough. For example, suppose we want to compress an English text.
Clearly, we would like to take advantage not only of the different frequencies of the
single letters, but also of the fact that these frequencies depend upon the context.
The degree of compression that we can achieve by considering a context of length k,
is expressed by the conditional kth order entropy Hk(s) defined as follows. For any
string w and αi ∈ A, let nwαi denote the number of occurrences in s of the string w
followed by αi. Let nw =

∑
i nwαi . We define

Hk(s) = − 1

|s|
∑
w∈Ak

(
h∑
i=1

nwαi log

(
nwαi
nw

))
.(2)

The value |s|Hk(s) is the output size of an ideal algorithm which uses − log(nwαi/nw)
bits for the symbol αi when it appears after the “context” w. This means that the
code for αi depends on the k characters preceding it. Note that we are assuming that
this algorithm codes the first k characters of s for free. As k increases, the entropy
Hk(s) is defined in terms of longer, and therefore more accurate, contexts. It is not
difficult to prove that Hk is a decreasing function of k.

Formula (2) is not the only possible definition of entropy in terms of frequencies
of characters. Another definition found in the literature is

H ′k(s) = −1

k

∑
w∈Ak

nw
n

log
(nw
n

)
,

896 S. RAO KOSARAJU AND GIOVANNI MANZINI

that is, H ′k is the first order entropy of the k-letter words. Disregarding low order
terms, we have H ′k(s) ' 1

k [H1(s) + · · · + Hk(s)] (we get an equality if we consider
also the k-letter words which wrap around the string s). Since Hk(s) decreases with
k, we have H ′k(s) ≥ Hk(s). Since we are interested in bounding the output size of
compression algorithms in terms of the entropy, by considering Hk we get stronger
results.

Having defined the kth order entropy, we can define the class of optimal com-
pression algorithms. The natural extension of the definition given in the information
theoretic setting (see, for example, [5]) is the following.

Definition 2.1. A compression algorithm A is coarsely optimal, if for all k ≥ 0
there exists a function fk, with limn→∞ fk(n) = 0, such that for all strings s we have

A(s)

|s| ≤ Hk(s) + fk(|s|),(3)

where A(s) denotes the output size of algorithm A on input s.
As we have already pointed out, the above definition is not completely satisfactory

since, if Hk(s) � fk(|s|), we can have an optimal algorithm for which the compres-
sion ratio is much greater than the entropy. For this reason, we introduce a more
restrictive definition of optimality in which we require that the difference between the
compression ratio and the kth-order entropy is a lower order term.

Definition 2.2. A compression algorithm A is λ-optimal with respect to Hk, if
it is coarsely optimal and there exists a function gk, with gk(t) = o(t), such that for
any string s with Hk(s) 6= 0

A(s) ≤ λ|s|Hk(s) + gk(A(s)),(4)

where A(s) denotes the output size of algorithm A on input s.
Note that (4) implies that gk(A(s)) = o(|s|Hk(s)). We use (4) since it is easier

to prove that a certain quantity is a lower order term with respect to the output size
of the algorithm rather than with respect to the usually unknown kth order entropy.
Note also that λ-optimality is defined with respect to a single entropy Hk. As we will
see, to ask (4) to hold for every k ≥ 0 would be too strong a requirement. However, a
λ-optimal algorithm must be coarsely optimal; hence (3) must hold for every k ≥ 0.
By studying the λ-optimality of an algorithm we measure how well it behaves when
the input is a low entropy string; this is something which is not possible using the
concept of coarse optimality alone.

In this paper we make use of the following lemma which is a generalization of a
similar result proven in [5] for stationary ergodic sequences.

Lemma 2.3. Let y1, . . . , yt denote a parsing of the string s such that each word
yi appears at most M times. For any k ≥ 0 we have

t log t ≤ |s|Hk(s) + t log

(|s|
t

)
+ t logM + Θ(kt+ t) .(5)

The proof of this lemma is given in the appendix. Note that if the words in the
parsing are all distinct the above inequality becomes

t log t ≤ |s|Hk(s) + t log

(|s|
t

)
+ Θ(kt+ t) .(6)

COMPRESSION OF LOW ENTROPY STRINGS 897

In the rest of the paper we use the following notation. The length of the output
produced by the compression algorithm A on input s is denoted by A(s). The compres-
sion ratio achieved is ρ(s) = A(s)/|s|. Given a nonempty string s, s− will denote the
string obtained from s by removing the last character. If |s| > 1, we set s−− = (s−)−.
Given k words w1, w2, . . . , wk, their concatenation will be denoted by w1w2 · · ·wk.

3. Compression of low entropy strings with LZ78. In this section we con-
sider the algorithm LZ78. First, we show that for certain strings LZ78 compression
ratio is well above the zeroth order entropy H0. Then we prove that by combining
LZ78 with RLE we get a new algorithm which is 3-optimal with respect to H0.

The algorithm LZ78 works as follows (see [1] for details). Assuming the words
w1, w2, . . . ,wi−1 have been already parsed, LZ78 selects the ith word as the longest
word that can be obtained by adding a single character to a previous word. Hence,
w−i = wj for some j < i, but unless wi is the last word in the parsing, we have
wi 6= wk, for all k < i. As soon as wi has been found, LZ78 outputs an encoding of
the pair (j, αi), where j is such that w−i = wj and αi is the last character of wi. If we
are working with an alphabet with h symbols, such encoding takes dlog ie + dlog he
bits (all logarithms in this paper are taken to the base 2). Hence, if the input string is
parsed into t words, the output of LZ78 has size t log t+ t log h+O(t). In the following
we assume that all the words are distinct since this greatly simplifies our analysis and
changes the word count by at most one.

Lemma 3.1. There exists a constant c > 0 such that for every n ≥ 1 there exists
a string s of length n satisfying LZ78(s)/|s| ≥ c√nH0(s).

Proof. Consider the string s = 01(n−1). LZ78 parses s into Θ(
√
n) words, hence

the compression ratio is Θ((log n)/
√
n), whereas H0(s) = (logn)/n.

Despite all the optimality results for LZ78, we can hardly say that it compresses
optimally the string s. As we have already pointed out, using the standard definition
of optimal compression given by (3), the problem is that if Hk(s) → 0 and Hk(s) =
o(fk(|s|)), the compression ratio ρ(s) can be much higher than Hk(s).

Lemma 3.1 suggests that the inability of LZ78 to compress efficiently low entropy
strings is due to the inability to cope with long runs of identical symbols. In view
of this, it is natural to ask if we can compress optimally also the low entropy strings
by combining LZ78 with RLE. RLE is a technique frequently used when the input
may contain long runs of identical symbols. RLE is used either as a fast stand-alone
compressor, or as a preprocessing step for more complex compression procedures. We
now present an algorithm, which we call LZ78RL, which follows the latter approach
and uses RLE as a preprocessing step for LZ78.

3.1. The algorithm LZ78RL. In this section we describe and analyze an algo-
rithm which combines LZ78 with RLE. We underline that our analysis does not rely
on the particular parsing realized by LZ78. Indeed, the analysis is based only on the
two facts that LZ78 parses the input string into distinct words, and that its output
size is t log t+O(t), t being the number of words in the parsing. Hence, our analysis
can be applied also to other parsing-based compression algorithms. With some addi-
tional work it can be applied also to the algorithms LZW and LZC (the core of the Unix
utility compress) in which the same word can appear in the parsing more than once.

Let s denote a string over the alphabet A, and let s′ be a substring of s. We
call s′ an α-segment if it contains only the symbol α, and the two symbols adjacent
to s′ are different from α. Let 0 denote a symbol not belonging to A. For m > 0,
α ∈ A, let B(αm) denote the string obtained by writing m in binary using α as 1 and
0 as 0. For example, B(ααααα) = α0α. Given the string s, we define the run length

898 S. RAO KOSARAJU AND GIOVANNI MANZINI

encoding of s as the string s̃ obtained from s by replacing each δ-segment δm with
the string B(δm). For example, if s = αααββαγγγγ, then

s̃ = ααβ0αγ00.

Clearly, given s̃ we can obtain s. In fact, δ is always the first symbol in B(δm), and
we know that we have reached the end of a δ-segment when we encounter a symbol
different from δ or 0. Note that, since |B(δm)| = blogmc+ 1 ≤ m, we have |s̃| ≤ |s|.
In the following LZ78RL will denote the algorithm which applies LZ78 to the string s̃.

Our implementation of RLE is certainly somewhat different from the more com-
mon strategy to use a byte to store a repetition count for the last seen character.
However, this simpler strategy is not powerful enough to make LZ78 overcome the
problem outlined in Lemma 3.1. An obvious drawback of our RLE implementation
is that it requires an extra character not belonging to A. Note that this is not a
problem when RLE is used together with algorithms like LZW and LZC which never
output single characters. We have also devised a RLE strategy in which we do not
need to extend the alphabet. However, this alternative encoding is less efficient, and
when combined with LZ78 it produces an algorithm which is 6-optimal with respect
to H0 (LZ78RL is 3-optimal with respect to H0; see Theorem 3.6).

Theorem 3.2. The algorithm LZ78RL is coarsely optimal with respect to the
entropy Hk(s), for any k ≥ 0.

Proof. Let t denote the number of words in the LZ78 parsing of the string s̃. In
the Appendix (Lemma B.1) we show that this parsing induces a t-word parsing of the
string s in which each word appears at most 2 log |s| times. By (5) we get

t log t ≤ |s|Hk(s) + t log

(|s|
t

)
+ t log log |s|+ Θ(kt) .(7)

Since LZ78 parses s̃ into distinct words, we have (see, for example, [5, Lemma 12.10.1])

t = O
(
|s̃|

log |s̃|
)

= O
(
|s|

log |s|
)

. Hence, log |s| = O
(
|s|
t

)
, and (7) becomes

t log t ≤ |s|Hk(s) + 2t log

(|s|
t

)
+ Θ(kt) .

Since t = O
(
|s|

log |s|
)

, we get

t log t

|s| ≤ Hk(s) +O

(
log log |s|

log |s| +
k

log |s|
)
,

which proves the coarse optimality of LZ78RL.
We now show that, in addition to being coarsely optimal, the algorithm LZ78RL

compresses almost optimally (with respect to H0) also the low entropy strings. In
our analysis we will use the following notation. Given a string s over the alphabet
A = {α1, . . . , αh}, for i = 1, . . . , h, let ni denote the number of occurrences of αi in

s. We assume that n1 = maxi ni, we set r = n2 + n3 + · · ·+ nh, and τ = |s|
r . Define

G(n1, n2, . . . , nh) = |s|H0(s) = −
h∑
i=1

ni log

(
ni
|s|
)
.(8)

By setting F (x) = x log x, we get the following alternative representation of G:

G(n1, . . . , nh) = F (n1 + n2 + · · ·+ nh)− [F (n1) + F (n2) + · · ·+ F (nh)] .(9)

COMPRESSION OF LOW ENTROPY STRINGS 899

In the following, we will use the two forms |s|H0(s) and G(n1, . . . , nh) interchangeably.
Let t denote the number of words into which LZ78 parses the string s. By (6), we

know that

LZ78(s) ≤ |s|H0(s) + t log

(|s|
t

)
+ Θ(t) .(10)

Using elementary calculus one can easily prove that

t log(|s|/t) ≤ t log τ + max[G(n1, . . . , nh)− t log t, t log log t+ 2t],

which yields

LZ78(s) ≤ |s|H0(s) + t log τ +O(t log log t) .(11)

The following lemma formalizes the intuitive notion that as τ = |s|
r increases, the

value |s|H0(s) becomes much smaller than |s|.
Lemma 3.3. For any string s, we have H0(s) ≤ log(τhe)

τ .
Proof. Let n = |s|. Using elementary calculus we get

G(n1, . . . , nh) = G(n1, n− n1) +G(n2, . . . , nh)

≤ G(n− n/τ, n/τ) + (n/τ) log h

= (n/τ)[F (τ)− F (τ − 1) + log h]

≤ (n/τ)[log(τe) + log h],

where we have used that F is convex and F ′(t) = log(et).
The following two lemmas bound the entropy and the length of the “encoded”

string s̃ in terms of the entropy of s.
Lemma 3.4. For any string s, we have |s̃|H0(s̃) ≤ |s|H0(s) + |s̃|.
Proof. For i = 1, . . . , h, let mi denote the number of occurrences of αi inside s̃,

and zi denote the number of 0’s created converting the αi-segments. Let vi = mi+zi.
By (9), we have

|s̃|H0(s̃) = G

(
m1, . . . ,mh,

h∑
i=1

zi

)

= F

(
m1 + · · ·+mh +

h∑
i=1

zi

)
−
[

h∑
i=1

F (mi) + F

(
h∑
i=1

zi

)]

≤ F (v1 + · · ·+ vh)−
h∑
i=1

[F (mi) + F (zi)].

By Jensen inequality, we know that F (mi) + F (zi) ≥ 2F (vi/2) = F (vi)− vi, hence

|s̃|H0(s̃) ≤ F (v1 + · · ·+ vh)−
h∑
i=1

[F (vi)− vi]

= G(v1, . . . , vh) +
h∑
i=1

vi

≤ |s|H0(s) + |s̃|.

900 S. RAO KOSARAJU AND GIOVANNI MANZINI

Lemma 3.5. For any string s, we have |s̃| ≤ 2|s|H0(s).
Proof. Let n1 = maxi ni, r = |s| − n1 = n2 + · · ·+ nh. If n1 ≤ |s|/2, we have

|s|H0(s) =
h∑
i=1

ni log

(|s|
ni

)
≥

h∑
i=1

ni = |s| ≥ |s̃|,

and the lemma follows. If n1 > |s|/2, then

|s|H0(s) ≥ n1 log

(
n1 + r

n1

)
+

h∑
i=2

ni log

(|s|
r

)

= r log

(
1 +

r

n1

)n1
r

+ r log

(|s|
r

)
.

Since, (1 + 1/t)t ≥ 2, for t ≥ 1, we have

|s|H0(s) ≥ r + r log

(|s|
r

)
.(12)

In order to bound |s̃|, we note that the string s contains at most r + 1 α1-segments.
Hence,

|s̃| ≤
r+1∑
i=1

(log qi + 1) +
h∑
i=2

ni,

with q1 + · · ·+ qr+1 = n1. From the concavity of log t we obtain

|s̃| ≤ (r + 1) log

(
n1

r + 1

)
+ 2r + 1.

For r = 1, we have

|s̃|
2|s|H0(s)

≤ 2 logn1 + 1

2 + 2 log(n1 + 1)
≤ 1.

For r ≥ 2, we set t = n1/r, and we get

|s̃|
2|s|H0(s)

≤ 2r + (r + 1) log t+ 1

2r + 2r log(1 + t)
.

A straightforward computation shows that for t ≥ 1, 2r log(1 + t) ≥ (r + 1) log t+ 1,
and the lemma follows.

We are now ready to establish the main result of this section.
Theorem 3.6. The algorithm LZ78RL is 3-optimal with respect to H0.
Proof. We have already shown that LZ78RL is coarsely optimal (Theorem 3.2).

Hence, we need to prove that for any string s with H0(s) 6= 0 we have

LZ78RL(s) ≤ 3|s|H0(s) + lower order terms.

By (11) we know that

LZ78RL(s) ≤ |s̃|H0(s̃) + t log τ +O(t log log t) ,

COMPRESSION OF LOW ENTROPY STRINGS 901

where t denotes the number of words in the LZ78 parsing of the string s̃. If τ ≤ 16h the
theorem trivially holds, since, by Lemmas 3.4 and 3.5, we have |s̃|H0(s̃) ≤ 3|s|H0(s).
Assume now τ > 16h. By (10), we know that

LZ78RL(s) ≤ |s̃|H0(s̃) + t log

(|s̃|
t

)
+O(t) .

It is straightforward to verify that, for 0 < x < |s̃|, we have x log(s̃/x) ≤ (|s̃| log e)/e ≤
(2|s̃|)/3. Hence, we can write

LZ78RL(s) ≤ |s̃|H0(s̃) + (2|s̃|)/3 +O(t) .

Since τ > 16h, we have log(τhe)
τ ≤ 5

6 . Thus, by Lemmas 3.3 and 3.5 we have

LZ78RL(s) ≤ |s̃|
(

log(τhe)

τ

)
+

2

3
|s̃|+O(t)

≤ 3

2
|s̃|+O(t)

≤ 3|s|H0(s) +O(t) .

This completes the proof.

4. Compression of low entropy strings with LZ77. In this section we con-
sider the algorithm LZ77. First, we prove that this algorithm is coarsely optimal
according to Definition 2.1. This is not surprising since it is known that LZ77 com-
presses much better than LZ78. In view of the results of section 3, what is more
interesting is to understand how well LZ77 compresses the low entropy strings. To
this end, we prove that LZ77 is 8-optimal with respect to H0. We also show that this
result cannot be substantially improved: we present a family of low entropy strings
for which LZ77(s) ≥ 2.5|s|H0(s) and we prove that LZ77 cannot be λ-optimal with
respect to H1.

The algorithm LZ77 works as follows (see [1] for details). Assuming the words w1,
w2, . . . , wi−1 have been already parsed, LZ77 selects the ith word as the longest word
that can be obtained by adding a single character to a substring of (w1w2 · · ·wi)−−.
Hence, wi has the property that w−i is a substring of (w1 · · ·wi)−−, but wi is not a
substring of (w1 · · ·wi)−. Note that although this is a recursive definition there is no
ambiguity. In fact, if |wi| > 1 at least the first character of wi belongs to w1w2 · · ·wi−1.
Once wi has been found, LZ77 outputs an encoding of the triplet (pi, li, αi), where
pi is the starting position of w−i within w1w2 · · ·wi−1, li = |wi|, and αi is the last
character of wi.

Compared to LZ78, the algorithm LZ77 parses the input into fewer words and
generally achieves a better compression. In addition, it still has the nice property
that both coding and decoding can be done in O(|s|) time (see [12]). Note that in
the original formulation of LZ77 [23] pi is allowed to denote a position only within
the last L characters of w1w2 · · ·wi−1 (the so called “sliding window”). The use of
a sliding window makes the coding procedure faster, and in most cases it affects the
compression ratio only slightly. However, as we will see (Lemma 4.3), if the window
has a fixed size the algorithm cannot be coarsely optimal.

4.1. Coarse optimality of LZ77. To analyze the compression ratio achieved
by LZ77 we need to specify the encoding of the triplet (pi, li, αi) representing the ith
word in the parsing of s. For our analysis we assume the following simple scheme.

902 S. RAO KOSARAJU AND GIOVANNI MANZINI

Since 1 ≤ pi ≤
∑
j<i lj , we use

⌈
log(

∑
j<i lj)

⌉
bits for encoding pi. Assuming the

input alphabet has h symbols, we use dlog he bits for encoding αi. Finally, since we
cannot bound in advance the size of li, we use a scheme which allows the encoding of
unbounded integers. More precisely, we code li using 1 + blog lic+ 2 blog(1 + blog ic)c
bits (for details on this and other similar schemes, see, for example, [3]). Although
there are other possible methods for describing these triplets, we believe our analysis
can be adapted to all “reasonable” encodings.

Assuming we use the above encoding scheme for each word in the parsing, the
output of LZ77 has size

LZ77(s) =

t∑
i=1

(
log(

∑
j<i

lj) + log li + 2 log(1 + log li)
)

+O(t) .

Obviously, (
∑
j<i lj) ≤ |s|. In addition, from the concavity of the function log x +

2 log(1+log x), we get
∑
i(log li+2 log(1+log li)) ≤ t[log(|s|/t)+2 log(1+log(|s|/t))].

Hence,

LZ77(s) ≤ t log |s|+ t log

(|s|
t

)
+O(t log log(|s|/t)) ,

or, equivalently,

LZ77(s) ≤ t log t+ 2t log

(|s|
t

)
+O(t log log(|s|/t)) .(13)

Since LZ77 parses its input into distinct words, we can use (6) which yields

LZ77(s) ≤ |s|Hk(s) + 3t log

(|s|
t

)
+O

(
kt+ t log log

(|s|
t

))
.(14)

We can now easily prove that LZ77 is optimal according to Definition 2.1.
Theorem 4.1. The algorithm LZ77 is coarsely optimal.
Proof. Let t denote the number of words in the LZ77 parsing. Since the words

are distinct, we have t = O
(
|s|

log |s|
)

. From (14) we get

LZ77(s)

|s| ≤ Hk(s) +O

(
log log |s|

log |s| +
k

log |s|
)
,

which proves the optimality of LZ77.
Despite the above optimality result, the following lemma shows that, ifH1(s)→ 0,

LZ77 compression ratio can be asymptotically greater than H1.
Lemma 4.2. There exists a constant c > 0 such that for every n > 1 there exists

a string s of length |s| ≥ n satisfying

LZ77(s)

|s| ≥ c log |s|
log log |s|H1(s).

Proof. Consider the following string:

s = 1 0k 22k 1 101 1021 1031 1041 · · · 10k1.

COMPRESSION OF LOW ENTROPY STRINGS 903

We have |s| = 2k+O
(
k2
)
. A simple computation shows that |s|H1(s) = k log k+O(k).

The LZ77 parsing of s is

1 0 0(k−1)2 2(2k−1)1 101 1021 1031 · · · 10k1.

For i ≥ 5, we have
∑
j<i lj > 2k. Hence, the encoding of pi takes Ω(k) bits. Since

there are k + 4 words, we have LZ77(s) = Ω
(
k2
)

and the lemma follows.
Let us comment on the above lemma. We can clearly see that the inefficiency of

LZ77 is due to the cost of encoding pi, and it is possible that, using a clever encoding,
we can reduce LZ77 output size significantly. However, for any encoding scheme we
have been able to think of, it was always possible to find a “bad” string which LZ77

is not able to compress up to the first order entropy. Lemma 4.2 also shows that it
is sometimes not convenient to search for the longest match over the entire parsed
portion of the input string. Indeed, a common practice is to restrict the search to a
sliding window containing the last L characters seen by the algorithm (this is in fact
the original formulation of LZ77 found in [23]). This strategy, which we call LZ77L,
usually reduces dramatically the cost of encoding the pointers pi’s, at the expense of
a moderate increment in the number of words. For example, for k < L < 2k, LZ77L
parses the string given in the proof of Lemma 4.2 in k + 5 words. The output size
is ≈ k(log k + logL) which, for L = kO(1), differs from |s|H1(s) only by a constant
factor. Unfortunately, the following lemma shows that LZ77L is not coarsely optimal
since it sometimes fails to compress up to the kth order entropy when k ≥ L− 1.

Lemma 4.3. The algorithm LZ77L is not coarsely optimal for any L > 0.
Proof. For k = L− 1 and n > 0, we exhibit a string s of length 2kn+ 1 such that

|s|Hk(s) = Θ(logn) and LZ77L(s) = Θ(n). Let

s = (0k1k)n1.

The LZ77L parsing of s consists of the following 2n+ 1 words

0 0k−11 1k−10 0k−11 · · · 1k−10 0k−11 1k.

To see this, consider for example the situation after the parsing of the third word. The
unparsed portion of the string is 0k−11k0k1k0k · · ·. Since at that moment the sliding
window contains 1k0, the only possible match is the one starting at the last character
of the sliding window. Hence, every word has length at most k and LZ77L(s) = Θ(n).
Note that LZ77 parses the above string into four words only.

For the computation of Hk(s) we notice that s contains only 2k distinct k-letter
words, namely

0i1k−i, i = 1, . . . , k and 1i0k−i i = 1, . . . , k.

In addition, every occurrence of a word 0i1k−i is always followed by a 1, and, for
i < k, every occurrence of 1i0k−i is followed by a 0. Finally, the word 1k is followed
n− 1 times by a 0 and once by a 1. As a result, we have |s|Hk(s) = Θ(logn) and the
lemma follows.

4.2. λ-optimality of LZ77. We now show that LZ77 is 8-optimal with respect
to H0. We start our analysis with the following lemma which establishes an optimality
result for the number of words in the LZ77 parsing.

Lemma 4.4. Let w1, w2, . . . , wt denote the LZ77 parsing of the string s. Suppose
y1, y2, . . . , yt′ is another parsing of s such that, for i = 1, . . . , t′, |yi| = 1 or y−i is a
substring of (y1 · · · yi)−−. Then, t ≤ t′.

904 S. RAO KOSARAJU AND GIOVANNI MANZINI

Proof. One can easily prove by induction that, for j = 1, . . . , t, the string
y1y2 · · · yj is a prefix of w1w2 · · ·wj .

Given a string s, in the following ni will denote the number of occurrences of αi
in s. We assume n1 = maxi ni, and we set r = |s|−n1. The following lemma provides
a bound on the number of words in the LZ77 parsing in terms of r. The bound is
tight when r � |s|.

Lemma 4.5. Let t denote the number of words in which the algorithm LZ77 parses
the string s. We have t ≤ 2(r + 1).

Proof. We prove the lemma by showing that there exists a parsing y1y2 · · · yt′ ,
t′ ≤ 2(r + 1), for s which satisfies the hypothesis of Lemma 4.4. Let k denote the
number of α1-segments appearing inside s. Since there are r characters different from
α1 we have 1 ≤ k ≤ r + 1. Consider the following parsing. Each α1-segment and the
character following it is parsed in two words: the first consisting of the single character
α1, the second of the form αk1αj . After this, we are left with at most r−k+1 unparsed
characters, all of them different from α1. By parsing these characters using length-one
words, we get a parsing for s consisting of 2k + (r − k + 1) ≤ 2(r + 1) words.

We are now ready to establish the main result of this section.
Theorem 4.6. The algorithm LZ77 is 8-optimal with respect to H0.
Proof. We have already shown that LZ77 is coarsely optimal (Theorem 4.1).

Hence, we need to prove that, for any string s with H0(s) 6= 0, we have

LZ77(s) ≤ 8|s|H0(s) + lower order terms.

Let t denote the number of words in the LZ77 parsing of s, and let r be defined
as in Lemma 4.5. We consider four cases.

Case 1. 1 ≤ r < 6.
By Lemma 4.5 we know that t ≤ 12. Using (13) we get

LZ77(s) ≤ 2t

(
log
|s|
t

)
+O(t log log(|s|/t)) .(15)

Let g(x) = x log(|s|/x). For 0 < x < (|s|/e), we have g′(x) > 0. Since r + 1 ≤ 2r, we
get

t log

(|s|
t

)
≤ 4r log

(|s|
r

)
≤ 4

[
h∑
i=2

ni log

(|s|
ni

)]
≤ 4|s|H0(s).

Combining this inequality with (15) we get the thesis.
Case 2. 6 ≤ r < 3|s|/7e.
By Lemma 4.5 we know that t ≤ 2(r + 1) ≤ 7

3r ≤ |s|/e. Reasoning as in Case 1
we get

t log

(|s|
t

)
≤ 7

3

[
r log

(|s|
r

)]
≤ 7

3
|s|H0(s).

Substituting this inequality into (14) we get the thesis.
Case 3. 3|s|/7e ≤ r < |s|/2.
Let G(n1, n2) be defined as in (8). We have

|s|H0(s) ≥ G(|s| − r, r) = |s|G(1− r
|s| ,

r
|s|) ≥ |s|G (1− 3/(7e), 3/(7e)) ≥ |s|/2.

COMPRESSION OF LOW ENTROPY STRINGS 905

By elementary calculus we know that, for 0 < x < |s|, x log(|s|/x) ≤ (|s|/e) log e ≤
2|s|/3. Hence

t log

(|s|
t

)
≤ 2|s|

3
≤ 4

3
|s|H0(s).

Substituting this inequality into (14) we get the thesis.
Case 4. r ≥ |s|/2.
Since, for i = 1, . . . , h, ni < |s|/2 we have

|s|H0(s) =
h∑
i=1

ni log

(|s|
ni

)
≥ |s|.

Combining this inequality with the fact that t log(|s|/t) ≤ 2|s|/3 we get LZ77(s) ≤
3|s|H0(s) +O(t log log(|s|t)), and the theorem follows.

Finally, we show that the above theorem cannot be substantially improved since
there exists an infinite family of strings such that the compression ratio of LZ77 is
greater than 2.5H0.

Lemma 4.7. For every n, there exists a string s of length |s| ≥ n such that
LZ77(s)
|s| ≥ 2.5H0(s).

Proof. Consider the following string

s = 01041091 · · · 10i
2

1 · · · 10k
2

1.

We have |s| = k3/3 +O
(
k2
)
, and |s|H0(s) = 2k log k+O(k). The LZ77 parsing of s is

0 1 00 02105 041010 · · · 02(i−1)10i
2+1 · · · 02(k−2)10(k−1)2+1 02(k−1)1.

Let pi and li denote, respectively, the starting position and the length of the ith
word. We have li = Θ

(
i2
)
. Hence, neglecting the log log term, encoding li takes

≈ 2 log i + log log i bits. Similarly, since
∑
j<i lj = Θ

(
i3
)
, encoding pi takes ≈ 3 log i

bits. Neglecting lower order terms, the output size of LZ77 is therefore 5(
∑
i≤k log i) ≈

5k log k bits, and the lemma follows.

5. Conclusions. In order to analyze the performance of the Lempel–Ziv algo-
rithms without any assumption on the input, we have compared the compression
ratio of LZ77 and LZ78 with the so-called empirical entropy of the input string. We
have shown that the standard definition of optimal compression does not take into
account the performance of compression algorithms when the input is a low entropy
string. For this reason we have introduced the concept of λ-optimality which makes it
possible to measure how well an algorithm performs when the input is a low entropy
string. We have proven that by combining LZ78 with RLE we get an algorithm which
is 3-optimal with respect to H0, and that LZ77 is 8-optimal with respect to H0.

A natural open question is whether there exist parsing-based compression algo-
rithms which are λ-optimal with respect to Hk for k ≥ 1. Theorem 4.2 shows that
LZ77 is not λ-optimal for k ≥ 1 and one can easily verify that the same is true for
LZ78RL as well. Theorem 4.2 also shows that to improve LZ77 performance one should
try to reduce the cost of the backward pointers. Some interesting ideas in this direc-
tion are described in [1, section 3.4] and [4]. Lemma 4.3 shows that the simple use of
a fixed size sliding window does not yield an optimal algorithm. However, the algo-
rithm LZ77L deserves further investigation for several reasons. First, it is the variant

906 S. RAO KOSARAJU AND GIOVANNI MANZINI

which is the basis for the most popular compressors (zip, gzip, arj, lha, zoo, etc.).
Second, we have been able to show that its compression ratio can be higher than Hk

only when k ≥ L− 1. Since in typical implementations L ≈ 105, our result has only a
theoretical value. An interesting open problem is to prove or disprove that for LZ77L
inequalities (3) and (4) hold for k ≤ θ(L) for some appropriate function θ.

Appendix A. Proof of Lemma 2.3. In this appendix we prove Lemma 2.3.
Our proof follows closely the proof given in [5, section 12.10] for a similar result
involving the entropy of a stationary ergodic source.

Let s = x1x2 · · ·xn+k be a string of length n + k. For w ∈ Ak and α ∈ A let
nwα and nw be defined as in section 2. We define the empirical probability P (wα) as
P (wα) = nwα/nw (if nw = 0 we set P (wα) = 0). For i > k let si denote the length-k
string preceding xi in s. Using this notation, the kth order entropy can be written as

|s|Hk(s) = −
n+k∑
i=k+1

logP (sixi).(16)

Let v = v1v2 · · · vh and w = w1 · · ·wk be two strings over A. For i = 1, . . . , h let
w(i) denote the length-k string preceding the symbol vi in wv (for example, w(2) =
w2 · · ·wkv1). We define

P(wv) =
h∏
i=1

P (w(i)vi).(17)

The value P(wv) corresponds to the conditional probability P (v|w) introduced in
Lemma 12.10.3 of [5]. The following lemma shows that, in some sense, P does behave
as a conditional probability.

Lemma A.1. For any string w and l ≥ 1 we have
∑
v∈Al P(wv) ≤ 1.

Proof. We prove the result by induction on l. If l = 1 we have
∑
α∈A P(wα) =∑

α∈A P (wα) ≤ 1. For l > 1, let v = v1 · · · vl and v′ = v2 · · · vl. We have∑
v∈Al

P(wv) =
∑
v∈Al

P (wv1)P(w(2)v′)

=
∑
α∈A

P (wα)

(∑
v′∈Al−1

P(w(2)v′)
)

≤
∑
α∈A

P (wα)

≤ 1.

Corollary A.2. Let V = {v1, . . . , vm} be a collection of length-l strings in
which each vi appears at most M times. For any string w we have∑

v∈V
P(wv) ≤M.

Let y1, . . . , yc denote any parsing of the string xk+1 · · ·xn+k, and let zi denote the
length-k substring preceding yi in s = x1 · · ·xn+k. For l ≥ 1 and w ∈ Ak we define
clw as the number of words yi such that |yi| = l and zi = w. By construction, the
values clw satisfy ∑

l,w

clw = c,
∑
l,w

lclw = n.(18)

COMPRESSION OF LOW ENTROPY STRINGS 907

The following lemma is a generalization of Ziv’s inequality [5, Lemma 12.10.3].
Lemma A.3. Let y1, . . . , yc denote a parsing of the string xk+1 · · ·xn+k in which

each word appears at most M times. We have

|s|Hk(s) ≥
∑

w∈Ak, l≥1

clw log clw − c logM.

Proof. By (16) and (17) we have

|s|Hk(s) = −
n+k∑
i=k+1

logP (sixi)

= −
c∑
i=1

logP(ziyi)

= −
∑
l,w

∑
|yi|=l, zi=w

logP(ziyi)

= −
∑
l,w

clw

(∑
|yi|=l, zi=w

1

clw
logP(ziyi)

)
.

By Jensen’s inequality and Corollary A.2 we get

|s|Hk(s) ≥ −
∑
l,w

clw log

(∑
|yi|=l, zi=w

1

clw
P(ziyi)

)

≥ −
∑
l,w

clw

(
log

1

clw
+ log

(∑
|yi|=l, zi=w

P(ziyi)

))
≥
∑
l,w

clw log clw − c logM.

Theorem A.4. Let y1, . . . , yc denote a parsing of the string xk+1 · · ·xn+k in
which each word appears at most M times. We have

c log c ≤ |s|Hk(s) + c logM + c
(
k log |A|+ log

n

c

)
+ Θ(c) .

Proof. Let πlw = clw/c. We have∑
l,w

clw log clw = c

(∑
l,w

clw
c

(log
clw
c

+ log c)

)

= c log c+ c

(∑
l,w

πlw log πlw

)
.

By (18), the values πlw satisfy∑
l,w

πlw = 1,
∑
l,w

lπlw = n/c.(19)

Using Lagrange multipliers to maximize −∑l,w πlw log πlw under the constraint (19),
or reasoning as in the proof of [5, Theorem 12.10.1] we get

−
∑
l,w

πlw log πlw ≤ k log |A|+ log
(

1 +
n

c

)
+
n

c
log
(

1 +
c

n

)
.

908 S. RAO KOSARAJU AND GIOVANNI MANZINI

Combining the above inequalities with Lemma A.3 we get

c log c ≤ |s|Hk(s) + c logM + c
(
k log |A|+ log

(
1 +

n

c

)
+
n

c
log
(

1 +
c

n

))
.

The thesis follows observing that log(1+c/n)(n/c) ≤ log e and log(1+n/c) ≤ log(n/c)+
(c/n) log e.

Proof of Lemma 2.3. Let s = x1 · · ·xn with n > k. Let y1, . . . , yt denote a parsing
of s in which each word appears at most M times. This parsing induces a parsing of
xk+1 · · ·xn in which each word appears at most M + 1 times. The thesis follows by
Theorem A.4.

Appendix B. LZ78RL-induced parsing.

Lemma B.1. Let s̃ be derived from s as described in section 3, and let w1, w2, . . . ,
wt denote the LZ78 parsing of s̃. Then, it is possible to build a parsing w′1, w

′
2, . . . , w

′
t

of s such that each word appears at most 2 log |s| times.

Proof. The parsing of w′1, w
′
2, . . . , w

′
t is defined as follows. For i = 1, . . . , |s̃|, we

associate to the ith character of s̃ a nonempty string ωi with the property that

s = ω1ω2 · · ·ω|s̃|.(20)

Then, from each word wj in the parsing of s̃ we get the word w′j by simply concate-
nating the strings ωi’s corresponding to the characters of wj .

The strings ωi’s are defined by partially reversing the binary encoding utilized
for the construction of the string s̃. More precisely, let b = blbl−1 · · · b1b0, bi ∈ {α, 0}
denote the encoding of the α-segment αm (that is, with the notation of section 3
bl · · · b0 = B(αm)). We associate to each character bj the string ω(bj) defined by

ω(bj) =


α if j = l;
α2j if j < l and bj = 0;

α2j+1

if j < l and bj = α.
(21)

Note that, for j < l, ω(bj) contains 2j more α’s than if we simply had reversed the
binary encoding. This is done at the expense of bl (which translates to a single α)
with the purpose of ensuring that every ω(bj) is nonempty. One can easily verify that
ω(bl)ω(bl−1) · · ·ω(b0) = αm, which proves that the strings ωi’s satisfy (20).

We now show that in the parsing w′1, w
′
2, . . . , w

′
t each word appears at most 2 log |s|

times. Since the words wj ’s are distinct, we need to show that when we replace the
single characters with the strings ωi’s, at most 2 log |s| distinct words translate into
the same word. To prove this we introduce the following notation. For each substring
σ of s̃ we denote by ω(σ) the string obtained by replacing each character of σ with
the corresponding ωi’s. For α ∈ A, we denote with Bij(α

m) the string obtained by
removing from B(αm) the first i and the last j characters. For example,

B10(α5) = 0α, B01(α4) = α0, B00(α17) = α000α.

Finally, given any string σ ∈ {α, 0}∗ we denote with Bin(σ) the integer we get by
replacing α with 1 and interpreting the result as a binary number. For example,

Bin(α) = Bin(00α) = 1, Bin(α00) = 4.

COMPRESSION OF LOW ENTROPY STRINGS 909

By construction we know that s̃ consists in a concatenation of “compressed” α-
segments. Hence, a generic word wi in the parsing of s̃ has the form1

wi = Br0(αn1
i1

)B(αn2
i2

) · · ·B(α
nk−1

ik−1
)B0s(α

nk
ik

).

We have

ω(wi) = ω(Br0(αn1
i1

))ω(B(αn2
i2

)) · · · ω(B(α
nk−1

ik−1
))ω(B0s(α

nk
ik

))

= ω(Br0(αn1
i1

))αn2
i2
· · · αnk−1

ik−1
ω(B0s(α

nk
ik

)).(22)

Thus, in order to count how many distinct wi’s translate into the same word, we need
to study when two distinct strings σ1, σ2 of the form

σ1 = Bi0(αn1) σ2 = Bj0(αn2)

or

σ1 = B0i(α
m1) σ2 = B0j(α

m2),

are such that ω(σ1) = ω(σ2).
Consider first the case σ1 = Bi0(αn1), σ2 = Bj0(αn2). By (21) we know that the

number of α’s in ω(σ1) is given by

|ω(σ1)| = |ω(Bi0(αn1))| =
{
Bin(σ1), if i = 0;
Bin(σ1) + 2|σ1| − 1, if i > 0;

and a similar result holds for ω(σ2). We now show that ω(σ1) = ω(σ2) with σ1 6= σ2

only if i = 0 and j 6= 0 or, vice versa, i 6= 0 and j = 0. If i = j = 0, then

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2) ⇒ σ1 = σ2.

In fact, we cannot have, say, σ1 = 000σ2, since σ1 = B00(αn1) and its leading character
is different from 0 by construction. Assume now i, j 6= 0. If |σ1| = |σ2|, then

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2),

which again implies σ1 = σ2 since the two strings have the same length. Finally, if
i, j 6= 0 and |σ1| 6= |σ2|, for example, |σ1| > |σ2|, we have

|ω(σ1)| = Bin(σ1) + 2|σ1| − 1

≥ 2|σ2| + 2|σ2| − 1

> Bin(σ2) + 2|σ2| − 1

= |ω(σ2)|,
which implies ω(σ1) 6= ω(σ2). In summary, we can conclude that there exist at most
two distinct strings σ1 = Bi0(αn1), σ2 = Bj0(αn2) such that ω(σ1) = ω(σ2).

Consider now the case σ1 = B0i(α
m1), σ2 = B0j(α

m2). By (21) we get that the
number of α’s in ω(σ1) is given by

|ω(σ1)| = |ω(B0i(α
m1))| = Bin(σ1)2i − 2i − 1 = 1 + (Bin(σ1)− 1)2i.(23)

1We are assuming that wi contains at least two distinct characters of A. Therefore, we do not
consider the case wi = Bjk(αn) which, however, can be handled with a similar analysis.

910 S. RAO KOSARAJU AND GIOVANNI MANZINI

We observe that we can have ω(σ1) = ω(σ2) with σ1 6= σ2 only if i 6= j. In fact, if
i = j, by (23) we have

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2),

which implies σ1 = σ2, since the leading character of both strings is different from 0.
Note that, by construction, the length of every “compressed” α-segment B(αn) is at
most log |s|. Hence, the above observation implies that there can be at most log |s|
distinct strings σ1, . . . , σk, σi = B0ji(α

ni), such that ω(σ1) = ω(σ2) = · · · = ω(σk).
In fact, the indices ji’s must be distinct and none of them can be greater than log |s|.

We can now conclude our analysis of the induced parsing w′1, . . . , w
′
t. Since there

are only two possible distinct prefixes and log |s| possible distinct suffixes which trans-
late to the same substring, by (22) we have that at most 2 log |s| (distinct) words, wi’s,
can translate to the same w′j .

This completes the proof.

REFERENCES

[1] T. Bell, I. Witten, and J. Cleary, Modelling for text compression, ACM Computing Sur-
veys, 21 (1989), pp. 557–592.

[2] P. Bender and J. Wolf, New asymptotic bounds and improvements on the Lempel-Ziv data
compression algorithm, IEEE Trans. Inform. Theory, 37 (1991), pp. 721–729.

[3] J. Bentley, D. Sleator, R. Tarjan, and V. Wei, A locally adaptive data compression
scheme, Comm. ACM, 29 (1986), pp. 320–330.

[4] C. Bloom, LZP: A new data compression algorithm, in Proceedings of the IEEE Data Com-
pression Conference, Snowbird, UT, 1996.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, New
York, 1991.

[6] G. Hansel, D. Perrin, and I. Simon, Compression and entropy, in Proceedings of the 9th
Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 577, Springer, Berlin, 1992, pp. 515–528.

[7] P. Jacquet and W. Szpankowski, Asymptotic behaviour of the Lempel-Ziv parsing scheme
in digital search trees, Theoret. Comput. Sci., 144 (1995), pp. 161–197.

[8] T. Kawabata, Exact analysis of the Lempel-Ziv algorithm for I. I. D. sources, IEEE Trans.
Inform. Theory, 39 (1993), pp. 698–708.

[9] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel-Ziv code,
IEEE Trans. Inform. Theory, 43 (1997), pp. 2–8.

[10] H. Morita and K. Kobayashi, On asymptotic optimality of a sliding window variation of
Lempel-Ziv codes, IEEE Trans. Inform. Theory, 39 (1993), pp. 1840–1846.

[11] E. Plotnik, M. Weinberger, and J. Ziv, Upper bounds on the probability of sequences emitted
by finite-state sources and on the redundancy of the Lempel-Ziv algorithm, IEEE Trans.
Inform. Theory, 38 (1992), pp. 66–72.

[12] M. Rodeh, V. Pratt, and S. Even, Linear algorithm for data compression via string match-
ing, J. ACM, 28 (1981), pp. 16–24.

[13] D. Salomon, Data Compression: The Complete Reference, Springer-Verlag, New York, 1997.
[14] S. Savari, Redundancy of the Lempel-Ziv incremental parsing rule, IEEE Trans. Inform. The-

ory, 43 (1997), pp. 9–21.
[15] S. Savari, Redundancy of the Lempel-Ziv string matching code, IEEE Trans. Inform. Theory,

44 (1998), pp. 787–791.
[16] D. Sheinwald, On the Ziv-Lempel proof and related topics, Proc. IEEE, 82 (1994), pp. 866–871.
[17] W. Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Trans.

Inform. Theory, 39 (1993), pp. 1647–1659.
[18] A. Wyner and A. Wyner, Improved redundancy of a version of the Lempel-Ziv algorithm,

IEEE Trans. Inform. Theory, 41 (1995), pp. 723–731.
[19] A. Wyner and J. Ziv, Fixed data base version of the Lempel-Ziv data compression algorithm,

IEEE Trans. Inform. Theory, 37 (1991), pp. 878–880.
[20] A. Wyner and J. Ziv, The sliding-window Lempel-Ziv algorithm is asymptotically optimal,

Proc. IEEE, 82 (1994), pp. 872–877.

COMPRESSION OF LOW ENTROPY STRINGS 911

[21] A. J. Wyner, The redundancy and distribution of the phrase lengths in the fixed-database
Lempel-Ziv algorithm, IEEE Trans. Inform. Theory, 43 (1997), pp. 1452–1464.

[22] E. Yang and J. Kieffer, On the performance of data compression algorithms based on string
matching, IEEE Trans. Inform. Theory, 44 (1998), pp. 47–65.

[23] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans.
Inform. Theory, 23 (1977), pp. 337–343.

[24] J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24 (1978), pp. 530–536.

