
Compression Boosting 



The order zero entropy

Given a string s let
            H0(s) =  −∑i (ni/n) log(ni/n)

where ni is # of occurrences of symbol i, n=|s|.

H0(s) is a lower bound only if we use 
a fixed codeword for each character.



Going further

To compress more, we observe that certain pairs of 
symbols are more frequent than others...

This suggests new compression algorithms!

Example. For each symbol we use a codeword 
which depends on the previous symbol.

In order to form a more perfect ...
 c1 c1c2 c2c1



A lower bound to the compression of such 
algorithms is

             H1(s) = −∑j ∑i (nj,i/n) log(nj,i/nj)

nj,i: # occ pair j,i nj: # occ symbol j

Generalization: the k-th order entropy Hk(s)
is a lower bound if we use a codeword 
which depends on the previous k symbols.
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Another view of Hk(s)   (2)
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Summing up

To compress a string up to Hk(s) it suffices to 
compress a partition of BWT(sR) up to Hk 

However for each k there is a different overhead, so 
the choice of the partitioning strategy is non-trivial



Assume now we are a given an Order-0 
compressor C such that for any s

|C(s)|  ⩽  |s|H0(s)+ v |s|  

We can combine C with the BWT to obtain a 
new algorithm C’ such that for any s  

|C’(s)|  ⩽  |s|Hk(s)+v |s| + log|s| + gk 

for any k≥0.



Compression Boosting 

Given a memoryless algorithm C we use it as 
a black-box and we obtain an order-k 
algorithm C'.

C'           
C

Input Output
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BWT matrix vs Suffix Tree

Rows (top to bottom) correspond to leaves (left to right)



Key observation

We are interested only in the BWT partitions 
which enter in the definition of Hk for some 
k≥0.

Each “interesting” BWT partition is induced by a 
set L of suffix tree nodes called a leaf cover.
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Leaf cover corresponding to H1
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Leaf cover corresponding to H1

The leaf cover consists in the lowest common ancestors of 
leaves belonging to the same group. 
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Leaf cover corresponding to H2
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Leaf cover corresponding to H2
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Another leaf cover... 

A leaf cover has the property that every 
leaf has a unique ancestor in the set.



For any leaf cover L we define
              Cost(L) = ∑i  |si|H0(si) + v |si|

where s1, s2, ... is the partition corresponding to L.

Leaf cover defining Hk(s)

We compute the leaf cover L* of minimum cost;
for any k≥0 we have

Cost(L*) ⩽ Cost(Lk) ⩽ |s|Hk(s) + v|s| 



Surprisingly, the optimal leaf cover L* can be 
found with a  post-order visit of the suffix tree 
which takes linear time and linear space.

We do not need to actually build the suffix tree: 
for the post-order visit we only need two 
integer arrays of length |s|: the suffix array and 
lcp array.
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