Compression Boosting



The order zero entropy

Given a string s let
Ho(s) = —2_i (njy/n) log(ny/n)

where njis # of occurrences of symbol i, n=|s|.
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Ho(s) is a lower bound only if we use

a fixed codeword for each character.
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Going further

0 compress more, we observe that certain pairs of
symbols are more frequent than others...

This suggests new compression algorithms!
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Example. For each symbol we use a codeword

which depends on the previous symbol.

In order to form a more perfect

cq| [col C1 C C




A lower bound to the compression of such

algorithms is
Hi(s) = —>75 >.i (nji/n) log(n; i/nj)

{nj,i: # occ pair j,i j [nj: # occ symbol j}
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Generalization: the k-th order entropy Hk(s)

is a lower bound if we use a codeword
\which depends on the previous k symbols.
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Another view of Hk(s) (1)

Lets = ippississim, imississip
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Another view of Hk(s) (1)
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lets = ippississim,

SR = mississippi
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BWT(sR) =

ilmississi
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H4(s) = (4/11) Ho(pssm)+ (1/11) Ho(Z)
+ (2/11) Ho(pd) + (4/11) Ho(ssii)
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To compress up to H1(s) it suffices to

compress each segment up to Hg
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Another view of Hk(s) (2)

lets = ippississim,

SR = mississippi

BWT(sR) =

a N
To compress up to Hg(s) it suffices to

compress each segment up to Hg
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Summing up

To compress a string up to Hg(s) it suffices to
compress a partition of BWT(sR) up to H

However for each k there is a different overhead, so
the choice of the partitioning strategy is non-trivial



Assume now we are a given an Order-0
compressor C such that for any s

C(s)| < [s|Ho(s)+ Vv [s|

We can combine C with the BWT to obtain a
new algorithm C’ such that for any s

C'(s)| < [s|Hk(s)+Vv |s| + log[s| + gy
for any k20.




Compression Boosting

Input C' Output
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Given a memoryless algorithm C we use it as
a black-box and we obtain an order-k
algorithm C'.



BWT matrix vs Suffix Tree
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Rows (top to bottom) correspond to leaves (left to right)



Key observation

We are interested only in the BWT partitions
which enter in the definition of Hi for some

k>0.

Each “interesting” BWT partition is induced by a
set L of suffix tree nodes called a leaf cover.



Leaf cover corresponding to Hj
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Leaf cover corresponding to Hj+

P
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The leaf cover consists in the lowest common ancestors of
leaves belonging to the same group.



Leaf cover corresponding to Ho
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Leaf cover corresponding to Ho
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Another leaf cover...
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A leaf cover has the property that every
leaf has a unique ancestor in the set.




For any leaf cover L we define
Cost(L) = > Isi|Ho(s)) + v Isjl

where sq, So, ... IS the partition corresponding to L.

We compute the leaf cover L*of minimum cost;
forany k=0 we have
Cost(L™) < Cost(L;) < |s|Hy(s) + v|s|
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(Leaf cover defining Hk(s)j




Surprisingly, the optimal leaf cover L* can be
found with a post-order visit of the suffix tree
which takes linear time and linear space.

We do not need to actually build the suffix tree:
for the post-order visit we only need two
integer arrays of length |s|: the suffix array and
Icp array.
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