Compression Boosting

The order zero entropy

Given a string s let
Ho(s) = —2_i (njy/n) log(ny/n)

where njis # of occurrences of symbol i, n=|s|.

4 N

Ho(s) is a lower bound only if we use

a fixed codeword for each character.

- /

Going further

0 compress more, we observe that certain pairs of
symbols are more frequent than others...

This suggests new compression algorithms!

e N
Example. For each symbol we use a codeword

which depends on the previous symbol.

In order to form a more perfect

cq| [col C1 C C

A lower bound to the compression of such

algorithms is
Hi(s) = —>75 >.i (nji/n) log(n; i/nj)

{nj,i: # occ pair j,i j [nj: # occ symbol j}

4 N
Generalization: the k-th order entropy Hk(s)

is a lower bound if we use a codeword
\which depends on the previous k symbols.

/

Another view of Hk(s) (1)

Lets = ippississim, imississip
R _ . _ _ ippimissis
S''= mississippl issippimis
i1ssissippl
mississipp
BWT(SR)= pimississi
ppimississ
sippimissi
sissippimi
ssipplmiss

HeH- 0 W O 3 0 00

ssissipplm

Another view of Hk(s) (1)

mississip
pplmissis
sSslipplmis

lets = ippississim,

SR = mississippi

Ssilssippl

1ss1ssipp

BWT(sR) =

ilmississi
pimississ

H4(s) = (4/11) Ho(pssm)+ (1/11) Ho(Z)
+ (2/11) Ho(pd) + (4/11) Ho(ssii)

ippimissi
issippimi
sipplmiss
sissippim

ST O W R A o RHEE= TV, I B

W n » 0o "o B/ B H

4 N

To compress up to H1(s) it suffices to

compress each segment up to Hg
- /

Another view of Hk(s) (2)

lets = ippississim,

SR = mississippi

BWT(sR) =

a N
To compress up to Hg(s) it suffices to

compress each segment up to Hg
- /

im

1ississip

1P

pimissis

is
1s

sipplimis
sissippil

mi

SS1sSsS1pp

Pl

mississi

IS

imississ

si
si

pprimissi
ssippimi

S S
S S

- B n |0

lppimiss
issippim

R E I

Summing up

To compress a string up to Hg(s) it suffices to
compress a partition of BWT(sR) up to H

However for each k there is a different overhead, so
the choice of the partitioning strategy is non-trivial

Assume now we are a given an Order-0
compressor C such that for any s

C(s)| < [s|Ho(s)+ Vv [s|

We can combine C with the BWT to obtain a
new algorithm C’ such that for any s

C'(s)| < [s|Hk(s)+Vv |s| + log[s| + gy
for any k20.

Compression Boosting

Input C' Output
— e c | F—=

Given a memoryless algorithm C we use it as
a black-box and we obtain an order-k
algorithm C'.

BWT matrix vs Suffix Tree

imississip
lpplmissis
1sslipplmis
1ssissippl
mississipp
pimississi
ppimississ
sippimissi
sissippimi
Sslpplimiss
Ssissippim

m Ssi

IS
O 0O @
o

i/ \p
O O
1

B \S S P
OO OO0 OC

S m S s |1 3

He W 0 FTO 3 T

Rows (top to bottom) correspond to leaves (left to right)

Key observation

We are interested only in the BWT partitions
which enter in the definition of Hi for some

k>0.

Each “interesting” BWT partition is induced by a
set L of suffix tree nodes called a leaf cover.

Leaf cover corresponding to Hj

1
1
1
1
m
S
P
S
S
S
S

imississi
lppimissis

551pp1mls
ssissippi
lSSlSSlpp-
1m1551ss
pimissis
ippimiss]
issippimi
sippimiss
sissippi

p

1% p

Leaf cover corresponding to Hj+

P

mississip
ppimissis
Ssipplmis
Ssissippl

1SS1sSS1pp m_ p ssi

imississil
pimississ

bf\s S p S
OO OO0 OO

s m siis! |1]|1

g

i P

OO @ O O
ippimissi o o

issippimi B -

- W O 3 0 'O

sipplimiss

N 0 n 0o o 3/ e

r

sissippim

The leaf cover consists in the lowest common ancestors of
leaves belonging to the same group.

Leaf cover corresponding to Ho

imississip. ‘

ippimissisis i S

P

issippimis
| B ® O o O

i1ssissippl

mississippdi m p/ Ssi

1 P
pimississip OO @ O O

ppimississiy

S/ |®

OO O C

sippimis siI
silssippimi

Ssilpplimiss
Ssissippim

Leaf cover corresponding to Ho

imississip. ‘

ippimissisis i S
issippimisl F

i1ssissippl ‘ ‘ ‘
mississippi m p ssi i/ \p i/ 81

pimississip

ppimississiy

[N S

sippimissil Bs
silssippimi

Ssilpplimiss
Ssissippim

Another leaf cover...

mi

PP
SES!

is

i
i
i
1SS
m
©

ppi

S1p

sis

ssi
ssi

Ssi1ssip
imissis
ippimis
issippl
sissippd |

imississi
mississ

pimissils |
sippimis |

pprimiss
ssippilm

m sSsi i o 1 si

S P S

5 P
OO ® OO
s

A leaf cover has the property that every
leaf has a unique ancestor in the set.

For any leaf cover L we define
Cost(L) = > Isi|Ho(s)) + v Isjl

where sq, So, ... IS the partition corresponding to L.

We compute the leaf cover L*of minimum cost;
forany k=0 we have
Cost(L™) < Cost(L;) < |s|Hy(s) + v|s|

l

(Leaf cover defining Hk(s)j

Surprisingly, the optimal leaf cover L* can be
found with a post-order visit of the suffix tree
which takes linear time and linear space.

We do not need to actually build the suffix tree:
for the post-order visit we only need two
integer arrays of length |s|: the suffix array and
Icp array.

	Slide 5
	Slide 6
	Slide 7
	Slide 8
	BWT+Hk
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	LeavCover H1
	Slide 18
	LeavCov H2
	Slide 20
	Another LC
	Slide 22
	Slide 23

