
Compression Boosting

The order zero entropy

Given a string s let
 H0(s) = −∑i (ni/n) log(ni/n)

where ni is # of occurrences of symbol i, n=|s|.

H0(s) is a lower bound only if we use
a fixed codeword for each character.

Going further

To compress more, we observe that certain pairs of
symbols are more frequent than others...

This suggests new compression algorithms!

Example. For each symbol we use a codeword
which depends on the previous symbol.

In order to form a more perfect ...
 c1 c1c2 c2c1

A lower bound to the compression of such
algorithms is

 H1(s) = −∑j ∑i (nj,i/n) log(nj,i/nj)

nj,i: # occ pair j,i nj: # occ symbol j

Generalization: the k-th order entropy Hk(s)
is a lower bound if we use a codeword
which depends on the previous k symbols.

Another view of Hk(s) (1)

Let s = ippississim,

BWT(sR) =

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi

sR = mississippi

Another view of Hk(s) (1)

BWT(sR) =

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi

H1(s) = (4/11) H0(pssm)+ (1/11) H0(i)
 + (2/11) H0(pi) + (4/11) H0(ssii)

To compress up to H1(s) it suffices to
compress each segment up to H0

Let s = ippississim,
sR = mississippi

Another view of Hk(s) (2)

BWT(sR) =

To compress up to Hk(s) it suffices to
compress each segment up to H0

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi

Let s = ippississim,
sR = mississippi

Summing up

To compress a string up to Hk(s) it suffices to
compress a partition of BWT(sR) up to Hk

However for each k there is a different overhead, so
the choice of the partitioning strategy is non-trivial

Assume now we are a given an Order-0
compressor C such that for any s

|C(s)| ⩽ |s|H0(s)+ v |s|

We can combine C with the BWT to obtain a
new algorithm C’ such that for any s

|C’(s)| ⩽ |s|Hk(s)+v |s| + log|s| + gk

for any k≥0.

Compression Boosting

Given a memoryless algorithm C we use it as
a black-box and we obtain an order-k
algorithm C'.

C'
C

Input Output

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

BWT matrix vs Suffix Tree

Rows (top to bottom) correspond to leaves (left to right)

Key observation

We are interested only in the BWT partitions
which enter in the definition of Hk for some
k≥0.

Each “interesting” BWT partition is induced by a
set L of suffix tree nodes called a leaf cover.

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

Leaf cover corresponding to H1

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

Leaf cover corresponding to H1

The leaf cover consists in the lowest common ancestors of
leaves belonging to the same group.

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

Leaf cover corresponding to H2

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

Leaf cover corresponding to H2

imississipp
ippimississ
issippimiss
ississippim
mississippi
pimississip
ppimississi
sippimissis
sissippimis
ssippimissi
ssissippimi s s i is m

i

p ip s

i m p
s

m p ssi

p s

pi

p

i si

ps s

Another leaf cover...

A leaf cover has the property that every
leaf has a unique ancestor in the set.

For any leaf cover L we define
 Cost(L) = ∑i |si|H0(si) + v |si|

where s1, s2, ... is the partition corresponding to L.

Leaf cover defining Hk(s)

We compute the leaf cover L* of minimum cost;
for any k≥0 we have

Cost(L*) ⩽ Cost(Lk) ⩽ |s|Hk(s) + v|s|

Surprisingly, the optimal leaf cover L* can be
found with a post-order visit of the suffix tree
which takes linear time and linear space.

We do not need to actually build the suffix tree:
for the post-order visit we only need two
integer arrays of length |s|: the suffix array and
lcp array.

	Slide 5
	Slide 6
	Slide 7
	Slide 8
	BWT+Hk
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	LeavCover H1
	Slide 18
	LeavCov H2
	Slide 20
	Another LC
	Slide 22
	Slide 23

