The BWT as a
compressed index

Giovanni Manzini

Off-line pattern searching

We have a collection of documents (think
of project Gutemberg or Wikipedia) and
we want to search for information
(substrings) in it.

Since the collection is know In advance,
we speed-up the search building an
iIndex for the collection

The Suffix Array

The Suffix Array is the simplest indexing
data structure supporting fast pattern
searching

Consider for example

T = [swiss-miss -missing]

SW1SS*mlisSs- mlssing
WlssS-miss-missing
1sS-miss-missing
SS+*mlss-milssing
S*miss-missing
"m1sS-missing
mlssS-missing
1Ss-missing

The Suffix Array

[swiss-miss-missing]

QO J oy U b w N

g A
We consider all the 9 ss-missing
suffixes of the input text| 1V S-missing
\-) 11 -missing

12 missing

13 1ssing

14 ssing

15 sing

16 1ng

17 ng

18 g

6 *mlss- missing

_ 11 - missing
The Suffix Array 18 g
. . .. 16 1ing
[SWlSS'I’ﬂlSS'mlSSlng] 3 iSS°miss-missing

8 1ss-mi1ssing
13 1ssing

r ~ 7 mlss-mlissing
We consider all the 12 missing

suffixes of the inputtext| 1/ 19

- y 5 s+ miss- mlissing

10 s+ missing

() 15 sing
... and we sort them 4 ss-miss-missing
in lexicographic order 9 ss-missing

- J 14 ssing

1 swiss miss-+ mlissing
2 W1SS*mlsSsS*m1lssing

The Suffix Array

[swiss-miss-missing]

Using binary search
we find that miss

appears starting at

\positions 7 and 12/

0

"M1SS *missing

11 - missing

18 g

16 1ng

3 1ss*mlss- mlssing
8 1ss- mi1ssing

13 1ssing

7 miss-missing
12 missing
17 ng

5 s-'mlss- mlssing
10 s+ missing
15 sing

4 ss+ miss- mlissing

9 ss- missing
14 ssing

1 swiss miss-+-milissing
2 W1SS* mliss- mlssing

Using the suffix array we can find all the
occurrences of any pattern P in T using
binary search in O(|P]| log [T]) time.

Enriching the suffix array with additional
iInformation we can reduce search time
to O(|P| + log |T]).

_ 6| -miss-missing
The Suffix Array |11 | -missing
18| g
[swiss-miss-missing] 16 | ing

3| 1ss‘miss-missing
8| 1ss-missing
13 | issing

4 h 7 | miss-missing
. 12 | missin
To represent the Suffix 17 n; e
Array we use |T| integers 5| s-miss-missing
inthe range 1 ... |T| 10 | s-missing
= [T| log|T| bits 15 | sing

4 | ss*miss-missing
- J 9| ss'missing

14 | ssing

1| swiss- miss-missing
2| wiss mliss-missing

In typical implementations we use a 4 byte
integer for each suffix array entry
and a byte for each text character

This Is a lot of space!

Example

100 Megabytes of emalil messages
400 Megabytes for the suffix array
500 Mbytes overall!

Another example:

Human Chromosome 2

240 Million bases (A,C,G,T)

960 Megabytes for the suffix array
1.2 Gigabytes overall!

What about compression?

Using standard tools, like gzip or bzip2,
we can usually save a lot of space.

Examples:
100Mb email messages - 25Mb
240M DNA bases - 60Mb

Is this gap unavoidable?

Compression
(small storage)

Email messages
25Mb

Human Chromosome
60Mb

Suffix Array
(fast retrieval)

Email messages
500Mbytes

Human Chromosome
1.2 Gb

Note: the Suffix Array supports arbitrary
substring searches. If you only want to
search for words you can use less
space.

It turns out that there is no gap: you can
have simultaneously small storage and
fast retrieval.

Burrows-Wheeler compression

The Burrows-Wheeler (or Block-Sorting)
compression algorithm is based on the
new concept of transforming the text in
order to make it easier to compress.

The transformation is now called
Burrows-Wheeler Transform and is
strictly related to the Suffix Array.

6

Burrows-Wheeler Transform 11

[swiss-miss-missing]

é)
To compute the BWT we
go on transforming each
suffix into a cyclic shift of T.
o W,
é)
The last column of the
resulting matrix is the BWT.
o W,

18
16
3
8
13
7
12
17
S
10
15
4
9
14
1
2

*M1SS*mM1SSI1Ngswils
‘M1SS1NgSW1SS misS
gsSwlisSsS milsSs-missi
lngswiss-miss-mis
1Ss°miss-missings
1SS°misSsS1ngswiss:-
1SS1ngswiss-miss-
m1SS mM1SSINgSW1SS
M1SS1INgSwW1SS+*misSs
NgsSwissS-miliss-miss
S*milss-missingswi
S-misSsSingswiss-mil
S1INgsSwiliss-miss-mil
SS*mMi1sSsS - miSS1nNgsw
SS*mM1sSsS1ingswiss-m
Ss1lngswiliss-miss-m
SW1sSsS- mlss-missin
wWlss-miss-missing

S 83 5 0 35 n

W Q kR 00 D

Burrows-Wheeler Transform

[swiss-miss-missing]

~

.

We discard the Suffix Array
but we keep track of the row
containing the original string

~

.

\

= =
oy 0O O

|

I

e

e =
N R D O D O~ rv—3—Ll_ 00 W

\

*M1SS*mM1SSI1Ngswils
‘M1SS1NgSW1SS misS
gsSwlisSsS milsSs-missi
lngswiss-miss-mis
1ss+ milss- -missings
1SS°m1ssingswiss-
1SS1ngswiss-miss-
misSS+ m1SS1Ngswlss
M1SS1INgSwW1SS+*misSs
NgsSwissS-miliss-miss
S*milss-missingswi
S-misSsSingswiss-mil
S1INgsSwiliss-miss-mil
SS*mMi1sSsS - miSS1nNgsw
SS*mM1sSsS1ingswiss-m
Ss1lngswiliss-miss-m
Swiss-miss-missin
wWlss-miss-missing

S 83 5 0 35 n

wQ H DD Db

| "

SWiss-miss-missing

in F s is above s because
ing<wiss- - -

In L s is in the row prefixed
by ing hence is above s

-
E—

. T

S0 000000 sS 88 HREHRQ -

miss-missingswis
missingswiss ‘mis
SW1SS-miss-missi
ngswiss-miss-mis
SS'miss-missings
SS'missingswiss-
SsS1ngswiss ‘miss-
1SS °'m1sSsS1nNngswiss
issingswiss-miss
gsSWw1lisSsS ‘misSsS-miss
‘miss - -missingswi
‘missingswiss-mi
ingswiss -miss-mi
S'miss-missingsw
S'missingswiss-m
singswiss-miss-m
wiss-miss-missin
iss'-miss-missing

nQ HHEHEFODOOPFE - -83820B00 ™

Summing up

The relative order of the occurrences of any
given character in F and L is the same

We can easily build a map telling us where
each characterinLisin F

We call this the LF map and is crucial to
recover T given L

Using the LF map we
retrieve T right-to-left

. | TTI

0000 nnnd8 8 KHEHRRQ

IastchrofEi>>

5820500

WQ HH 000

Using the LF map we
retrieve T right-to-left

. | TTI

0000 nnnd8 8 KHEHRRQ

IastchrofE;>ﬂ

5820500

WQ HH 000

Using the LF map we
retrieve T right-to-left

T = ng

...and so on

-
We now show that the

LF-map can be used also

{or pattern searching p

. | TTI

T 0000000 BS8 8RR -

nQ FH P00 L P

880 0n ™

Search using the BWT

Suppose we want to count
the occurrences of mis

Working with only F and L
we successively find the
range of rows prefixed by:
S, IS, mis

S n®nnononS 338 EREHEFEQ

833 =000l

WQ F kW n 0 s

Backward search

The rows prefixed by s
are easy to find using F

@e represent F \

storing the position
of the first occ of
each symbol:

- -1 g -3 1 -4
m-8 n -10
s »11 w -18

the total cost is:

\\O(|A| log t) bits /

e | TTI

sl nononsS 88 P FQ

3 8 s 0S5 non ™

0w Q HF 00 n

Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k

. |

S 3 3 ‘I—'- - - I—'-‘LQ

882000 ™

0Q H R D WD e

Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k

. | T

sl 0 0w w0 n s 3 3|k e R Pla

- N
Consider an i In

this region and
.apply the LF map/

88350300 ™

wQ F B0 n E

Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k

. T

S 3 B‘I—'- H- - |—-th

8832000

WQ H B0 U e

Backward search

Since the two I's are the
same, row A is row B
left-shifted by 1.

F L
. S

S
g n
1 S
i W
1 m
1 m
m .
m .
n 1
S S
S S
S S
S i
S 1
S 1
S g
W S

Backward search

Since the two I's are the
same, row A is row B
left-shifted by 1.

F L
. S

S
g n
1 S
i W
1 m
1 m
m .
m .
n 1
S S
S S
S S
S i
S 1
S 1
S g
W S

Backward search

. T

S5 B B R B B R Q

8820500 C

k in this region

The same is true
for the other i's

~

/

[m@ T 7 T

Backward search

. T

5 3 3 B BB E-Q

)]

8820500 C

k in this region

~

The same is true
for the other i's

/

[m@ TR R

Backward search

We have found the rows
prefixed by is!

. | T

()]

S w0 n®nonnnsS 8 3 F PR eQ

. 8383 s n3nn ™

W Q H 00D n e

Backward search

To find the rows prefixed
by mis we proceed in

the same way

. | T

S w0 n®nonnnsS 8 3 F PR eQ

88 g0 00 ™

W Q H 00D n e

Backward search

To find the rows prefixed
by mis we proceed in

the same way

. | T

)

S w0 n®nonnnsS 3 3 F R R eQ

88 fnws 0o ™

W Q H 00D n e

Backward search

To find the rows prefixed
by mis we proceed in

the same way

. | T

S w0 n®nonnnsS 8 3 F PR eQ

W Q H 00D n e

88 sl o ™

Backward search

We have found the rows
prefixed by mis!

. | T

1s
is

s wnnunononon 38 38 R E R REQ

. 8383 s n3nn ™

W Q H 00D n e

Backward search

We have found the rows
prefixed by mis!

-

_

Even if we only have
F and L we can work
as iIf we had the SA

~N

e | TTI

MmisSS-miSS1Ngswis
Mm1SS1NgsSwissS-mis
SW1SS- miss-missi
NgSW1SS+*miSS -M1S
SS-°mM1sSsS-mi1sSsSings
SS-mM1SsS1nNgsSwiss -
SS1NgsSwiliss-miss-

1S/[s-mi1ssS1ingsSwiss
1SS1NgsSwisSS-miss

J

S ununnnonons38 8 F R R RQ

gSw1sSS- miSsS-misSs
-miss-missingswi
-missingswiss-mi
1Ngswiss-miss-mi
S-miss-missingsw
S*missingswiss-m
S1Ngswiss-miss-m
wilss- miss-missin
1Ss°miss-missing

5 83 s 05 00

0w Q H 00 D -

A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

© ©C O

OO 0O 0O 00O 0n00n

O OO0 00

A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

© ©C O

OO 0O 0O 0O 000

(@

113

114

115

116

117

O OO0 00

X N< NN

O 0O

A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

ﬁ Rank(c,112)

© ©C O

OO 0O 0O 0O 000

113

114

115

116

117

O OO0 00

(@

X N< NN

O 0O

A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

ﬁ Rank(c,112)

© ©C O

OO 0O 0O 0O 000

113

114

115

116

117

O OO0 00

C

Rank(c,117)

(@

X N< NN

O 0O

Summing up
Each basic step requires two rank queries on L

We can do a rank query in O(log|A|) time on a
compressed sequence.

Finding the range of rows prefixed by a pattern P
takes O(|P| log|A|) time (no dependency on |T[!).

We have a compressed representation of T
supporting fast queries.

	Slide 1
	Slide 2
	Slide 6
	SA example
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	drawback
	Slide 14
	compression
	the gap
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 25
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 64

