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Off-line pattern searching

We have a collection of documents (think
of project Gutemberg or Wikipedia) and
we want to search for information
(substrings) in it.

Since the collection is know In advance,
we speed-up the search building an
iIndex for the collection



The Suffix Array

The Suffix Array is the simplest indexing
data structure supporting fast pattern
searching

Consider for example

T = [ swiss-miss -missing]




SW1SS*mlisSs- mlssing
WlssS-miss-missing
1sS-miss-missing
SS+*mlss-milssing
S*miss-missing
"m1sS-missing
mlssS-missing
1Ss-missing

The Suffix Array

[swiss-miss-missing]
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We consider all the 9 ss-missing
suffixes of the input text| 1V S-missing
\- ) 11 -missing

12 missing

13 1ssing

14 ssing

15 sing

16 1ng

17 ng

18 g



6 *mlss- missing

_ 11 - missing
The Suffix Array 18 g
. . .. 16 1ing
[ SWlSS'I’ﬂlSS'mlSSlng] 3 iSS°miss-missing

8 1ss-mi1ssing
13 1ssing

r ~ 7 mlss-mlissing
We consider all the 12 missing

suffixes of the inputtext| 1/ 19

- y 5 s+ miss- mlissing

10 s+ missing

( ) 15 sing
... and we sort them 4 ss-miss-missing
in lexicographic order 9 ss-missing

- J 14 ssing

1 swiss miss-+ mlissing
2 W1SS*mlsSsS*m1lssing



The Suffix Array

[swiss-miss-missing]

Using binary search
we find that miss

appears starting at

\positions 7 and 12/

0

"M1SS *missing

11 - missing

18 g

16 1ng

3 1ss*mlss- mlssing
8 1ss- mi1ssing

13 1ssing

7 miss-missing
12 missing
17 ng

5 s-'mlss- mlssing
10 s+ missing
15 sing

4 ss+ miss- mlissing

9 ss- missing
14 ssing

1 swiss miss-+-milissing
2 W1SS* mliss- mlssing



Using the suffix array we can find all the
occurrences of any pattern P in T using
binary search in O(|P]| log [T]) time.

Enriching the suffix array with additional
iInformation we can reduce search time
to O(|P| + log |T]).



_ 6| -miss-missing
The Suffix Array |11 | -missing
18| g
[swiss-miss-missing] 16 | ing

3| 1ss‘miss-missing
8| 1ss-missing
13 | issing

4 h 7 | miss-missing
. 12 | missin
To represent the Suffix 17 n; e
Array we use |T| integers 5| s-miss-missing
inthe range 1 ... |T| 10 | s-missing
= [T| log|T| bits 15 | sing

4 | ss*miss-missing
- J 9| ss'missing

14 | ssing

1| swiss- miss-missing
2| wiss mliss-missing




In typical implementations we use a 4 byte
integer for each suffix array entry
and a byte for each text character

This Is a lot of space!



Example

100 Megabytes of emalil messages
400 Megabytes for the suffix array
500 Mbytes overall!



Another example:

Human Chromosome 2

240 Million bases (A,C,G,T)

960 Megabytes for the suffix array
1.2 Gigabytes overall!



What about compression?

Using standard tools, like gzip or bzip2,
we can usually save a lot of space.

Examples:
100Mb email messages - 25Mb
240M DNA bases - 60Mb



Is this gap unavoidable?

Compression
(small storage)

Email messages
25Mb

Human Chromosome
60Mb

Suffix Array
(fast retrieval)

Email messages
500Mbytes

Human Chromosome
1.2 Gb



Note: the Suffix Array supports arbitrary
substring searches. If you only want to
search for words you can use less
space.

It turns out that there is no gap: you can
have simultaneously small storage and
fast retrieval.



Burrows-Wheeler compression

The Burrows-Wheeler (or Block-Sorting)
compression algorithm is based on the
new concept of transforming the text in
order to make it easier to compress.

The transformation is now called
Burrows-Wheeler Transform and is
strictly related to the Suffix Array.
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Burrows-Wheeler Transform 11

[swiss-miss-missing]

é )
To compute the BWT we
go on transforming each
suffix into a cyclic shift of T.
o W,
é )
The last column of the
resulting matrix is the BWT.
o W,
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‘M1SS1NgSW1SS misS
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1Ss°miss-missings
1SS°misSsS1ngswiss:-
1SS1ngswiss-miss-
m1SS mM1SSINgSW1SS
M1SS1INgSwW1SS+*misSs
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S*milss-missingswi
S-misSsSingswiss-mil
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SS*mMi1sSsS - miSS1nNgsw
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Ss1lngswiliss-miss-m
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wWlss-miss-missing
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Burrows-Wheeler Transform

[swiss-miss-missing]

~
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We discard the Suffix Array
but we keep track of the row
containing the original string
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*M1SS*mM1SSI1Ngswils
‘M1SS1NgSW1SS misS
gsSwlisSsS milsSs-missi
lngswiss-miss-mis
1ss+ milss- -missings
1SS°m1ssingswiss-
1SS1ngswiss-miss-
misSS+ m1SS1Ngswlss
M1SS1INgSwW1SS+*misSs
NgsSwissS-miliss-miss
S*milss-missingswi
S-misSsSingswiss-mil
S1INgsSwiliss-miss-mil
SS*mMi1sSsS - miSS1nNgsw
SS*mM1sSsS1ingswiss-m
Ss1lngswiliss-miss-m
Swiss-miss-missin
wWlss-miss-missing
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SWiss-miss-missing

in F s is above s because
ing<wiss- - -

In L s is in the row prefixed
by ing hence is above s

-
E—
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S0 000000 sS 88 HREHRQ -

miss-missingswis
missingswiss  ‘mis
SW1SS-miss-missi
ngswiss-miss-mis
SS'miss-missings
SS'missingswiss-
SsS1ngswiss  ‘miss-
1SS °'m1sSsS1nNngswiss
issingswiss-miss
gsSWw1lisSsS  ‘misSsS-miss
‘miss - -missingswi
‘missingswiss-mi
ingswiss -miss-mi
S'miss-missingsw
S'missingswiss-m
singswiss-miss-m
wiss-miss-missin
iss'-miss-missing

nQ HHEHEFODOOPFE - -83820B00 ™




Summing up

The relative order of the occurrences of any
given character in F and L is the same

We can easily build a map telling us where
each characterinLisin F

We call this the LF map and is crucial to
recover T given L



Using the LF map we
retrieve T right-to-left

. | TTI

0000 nnnd8 8 KHEHRRQ
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5820500

WQ HH 000




Using the LF map we
retrieve T right-to-left
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Using the LF map we
retrieve T right-to-left

T = ng

...and so on

-
We now show that the

LF-map can be used also

{or pattern searching p

. | TTI

T 0000000 BS8 8RR -

nQ FH P00 L P

880 0n ™




Search using the BWT

Suppose we want to count
the occurrences of mis

Working with only F and L
we successively find the
range of rows prefixed by:
S, IS, mis

S n®nnononS 338 EREHEFEQ

833 =000l

WQ F kW n 0 s




Backward search

The rows prefixed by s
are easy to find using F

@e represent F \

storing the position
of the first occ of
each symbol:

- -1 g -3 1 -4
m-8 n -10
s »11 w -18

the total cost is:

\\O(|A| log t) bits /

e | TTI
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Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k

. |
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882000 ™
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Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k

. | T

sl 0 0w w0 n s 3 3|k e R Pla

- N
Consider an i In

this region and
.apply the LF map/
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Backward search

The rows prefixed by is
are a subset of these and

are consecutive. k
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Backward search

Since the two I's are the
same, row A is row B
left-shifted by 1.
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n 1
S S
S S
S S
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S 1
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Backward search

Since the two I's are the
same, row A is row B
left-shifted by 1.
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Backward search
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S5 B B R B B R Q

8820500 C

k in this region

The same is true
for the other i's
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Backward search

. T

5 3 3 B BB E-Q

)]

8820500 C

k in this region

~

The same is true
for the other i's

/

[m@ TR R



Backward search

We have found the rows
prefixed by is!
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Backward search

To find the rows prefixed
by mis we proceed in

the same way

. | T
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Backward search

To find the rows prefixed
by mis we proceed in

the same way
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Backward search

To find the rows prefixed
by mis we proceed in

the same way
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Backward search

We have found the rows
prefixed by mis!
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Backward search

We have found the rows
prefixed by mis!

-

\_

Even if we only have
F and L we can work
as iIf we had the SA

~N

e | TTI
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SS-mM1SsS1nNgsSwiss -
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A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

© ©C O
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A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

© ©C O

OO 0O 0O 0O 000

(@

113

114

115

116

117

O OO0 00

X N< NN

O 0O




A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

ﬁ Rank(c,112)
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A closer look

The basic step is

going from the rows
prefixed by p to the
rows prefixed by cp

ﬁ Rank(c,112)
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Summing up
Each basic step requires two rank queries on L

We can do a rank query in O(log|A|) time on a
compressed sequence.

Finding the range of rows prefixed by a pattern P
takes O(|P| log|A|) time (no dependency on |T[!).

We have a compressed representation of T
supporting fast queries.
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