The BWT as a compressed index

Giovanni Manzini

Off-line pattern searching

We have a collection of documents (think of project Gutemberg or Wikipedia) and we want to search for information (substrings) in it.

Since the collection is know in advance, we speed-up the search building an index for the collection

The Suffix Array is the simplest indexing data structure supporting fast pattern searching

Consider for example

$$T = \begin{bmatrix} swiss \cdot miss \cdot missing \end{bmatrix}$$

 $swiss \cdot miss \cdot missing$

We consider all the suffixes of the input text

```
swiss · miss · missing
    wiss · miss · missing
    iss · miss · missing
 4
    ss·miss·missing
 5
    s·miss·missing
 6
    ·miss·missing
    miss·missing
    iss · missing
    ss·missing
10
    s·missing
11
    missing
12
    missing
13
    issing
14
    ssing
15
    sing
16
    ing
    ng
18
```

 $swiss \cdot miss \cdot missing$

We consider all the suffixes of the input text

... and we sort them in lexicographic order

```
·miss·missing
    ·missing
18
    g
16
    ing
    iss · miss · missing
 8
    iss · missing
13
    issing
    miss·missing
    missing
12
17
    ng
    s·miss·missing
10
    s·missing
15
    sing
    ss·miss·missing
    ss·missing
14
    ssing
    swiss·miss·missing
    wiss · miss · missing
```

swiss · miss · miss ing

Using binary search we find that miss appears starting at positions 7 and 12

```
·miss·missing
 6
     ·missing
11
18
    g
16
    ing
    iss · miss · missing
 8
    iss · missing
13
    issing
    miss · missing
 7
12
    missing
17
    ng
    s·miss·missing
 5
10
    s·missing
15
    sing
    ss·miss·missing
    ss·missing
14
    ssing
    swiss · miss · missing
    wiss · miss · missing
```

Using the suffix array we can find all the occurrences of any pattern P in T using binary search in O(|P| log |T|) time.

Enriching the suffix array with additional information we can reduce search time to O(|P| + log |T|).

swiss·miss·missing

To represent the Suffix Array we use |T| integers in the range 1 ... |T| $\Rightarrow |T| \log |T|$ bits

```
6
    ·miss·missing
11
    ·missing
18
    g
16
    ing
 3
    iss·miss·missing
 8
    iss·missing
13
    issing
    miss·missing
12
    missing
17
    ng
 5
    s·miss·missing
10
    s·missing
15
    sing
    ss·miss·missing
 9
    ss·missing
14
    ssing
    swiss·miss·missing
    wiss · missing
```

In typical implementations we use a 4 byte integer for each suffix array entry and a byte for each text character

This is a lot of space!

Example

100 Megabytes of email messages 400 Megabytes for the suffix array 500 Mbytes overall!

Another example:

Human Chromosome 2

240 Million bases (A,C,G,T)

960 Megabytes for the suffix array

1.2 Gigabytes overall!

What about compression?

Using standard tools, like gzip or bzip2, we can usually save a lot of space.

Examples:

100Mb email messages → 25Mb 240M DNA bases → 60Mb

Is this gap unavoidable?

Compression (small storage)

Email messages 25Mb

Human Chromosome 60Mb

Suffix Array (fast retrieval)

Email messages 500Mbytes

Human Chromosome 1.2 Gb **Note:** the Suffix Array supports arbitrary substring searches. If you only want to search for words you can use less space.

It turns out that there is no gap: you can have simultaneously small storage and fast retrieval.

Burrows-Wheeler compression

The Burrows-Wheeler (or Block-Sorting) compression algorithm is based on the new concept of transforming the text in order to make it easier to compress.

The transformation is now called Burrows-Wheeler Transform and is strictly related to the Suffix Array.

Burrows-Wheeler Transform

swiss · missing

To compute the BWT we go on transforming each suffix into a cyclic shift of T.

The last column of the resulting matrix is the BWT.

```
·miss·missingswis
 6
    ·missingswiss·mis
11
    gswiss·miss·missi
18
    ingswiss · miss · mis
16
    iss · miss · missings
 3
 8
    iss · missingswiss ·
                        m
    issingswiss · miss ·
13
                        m
    miss·missingswiss
12
    missingswiss·miss
17
    ngswiss·miss·miss
    s·miss·missingswi
 5
    s·missingswiss·mi
10
15
    singswiss·miss·mi
    ss·miss·missingsw
    ss·missingswiss·m
    ssingswiss·miss·m
14
    swiss·miss·missin
    wiss · miss · missing
```

S

n

W

S

Burrows-Wheeler Transform

swiss·miss·missing

We discard the Suffix Array but we keep track of the row containing the original string

·miss·missingswis •missingswiss·mis gswiss·miss·missi ingswiss · miss · mis iss • miss • missings iss · missingswiss · issingswiss · miss · miss·missingswiss missingswiss·miss ngswiss·miss·miss s·miss·missingswi s·missingswiss·mi singswiss·miss·mi ss·miss·missingsw ss·missingswiss·m ssingswiss·miss·m swiss·miss·missin wiss · miss · missing

n

W

m

m

S

18

6

in F s is above s because ing≤wiss···

in L s is in the row prefixed by ing hence is above s

miss·missingswis missingswiss·mis S swiss·miss·missi n ngswiss·miss·mis ss·miss·missings W ss·missingswiss· m ssingswiss · miss · m iss · missingswiss issingswiss · miss gswiss·miss·miss ·miss·missingswi ·missingswiss·mi ingswiss·miss·mi s·miss·missingsw s·missingswiss·m i singswiss·miss·m wiss · miss · missin g iss·miss·missing

S

i

Summing up

The relative order of the occurrences of any given character in F and L is the same

We can easily build a map telling us where each character in L is in F

We call this the LF map and is crucial to recover T given L

Using the LF map we retrieve T right-to-left

g i i i i m m n S S S S S S

S n S W m m i S S S i i i last chr of T g S

Using the LF map we

retrieve T right-to-left

Using the LF map we retrieve T right-to-left

T = ng...and so on

We now show that the LF-map can be used also for pattern searching

Search using the BWT

Suppose we want to count the occurrences of mis

Working with only F and L we successively find the range of rows prefixed by: s, is, mis

```
miss·missingswis
  missingswiss · mis
  swiss·miss·missi
g
  ngswiss·miss·mis
  ss·miss·missings
  ss·missingswiss·
                     m
  ssingswiss · miss ·
                     m
  iss · missingswiss
m
  issingsw.ss·miss
m
  gswiss · riss · miss
n
  ·miss·missingswi
  ·missingswiss·mi
  ingswiss · miss · mi
  s·miss·missingsw
  s·missingswiss·m
  singswiss·miss·m
  wiss·miss·missin
                     g
  iss·miss·missing
                     S
```

The rows prefixed by s are easy to find using F

We represent F storing the position of the first occ of each symbol:

$$\cdot \rightarrow 1$$
 g $\rightarrow 3$ i $\rightarrow 4$

$$m \rightarrow 8 \quad n \rightarrow 10$$

the total cost is:

O(|A| log t) bits

F

•

•

g

i

i

i

i

m

m

n

S

S

S

S

S

S

S

W

_

S

S

n

S

W

m

m

•

•

i

S

S

S

i

i

i

g

S

The rows prefixed by is are a subset of these and are consecutive.

The rows prefixed by is are a subset of these and are consecutive.

The rows prefixed by is are a subset of these and are consecutive.

Since the two i's are the same, row A is row B left-shifted by 1.

Since the two i's are the same, row A is row B left-shifted by 1.

We have found the rows prefixed by is!

S

S

n

S

W

m

m

i

S

S

S

i

i

i

g

S

To find the rows prefixed by mis we proceed in the same way

To find the rows prefixed by mis we proceed in the same way

To find the rows prefixed by mis we proceed in the same way

We have found the rows prefixed by mis!

We have found the rows prefixed by mis!

Even if we only have F and L we can work as if we had the SA

```
miss·missingswis
 missingswiss · mis
  swiss·miss·missi
g
                    n
  ngswiss·miss·mis
  ss·miss·missings
                    W
  ss·missingswiss·
                    m
  ssingswiss·miss·
                    m
  iss · missingswiss
  is singswiss · miss
  gswiss·miss·miss
                     i
  ·miss·missingswi
  ·missingswiss·mi
  ingswiss·miss·mi
                     i
  s·miss·missingsw
                     i
  s·missingswiss·m
                     i
  singswiss·miss·m
  wiss·miss·missin
                    g
  iss·miss·missing
                     S
```

The basic step is going from the rows prefixed by p to the rows prefixed by cp

The basic step is going from the rows prefixed by p to the rows prefixed by cp

113

114

115

116

y c x

The basic step is going from the rows prefixed by p to the rows prefixed by cp

113

114

C

Χ

The basic step is going from the rows prefixed by p to the rows prefixed by cp

113

114

Summing up

Each basic step requires two rank queries on L

We can do a rank query in O(log|A|) time on a compressed sequence.

Finding the range of rows prefixed by a pattern P takes O(|P| log|A|) time (no dependency on |T|!).

We have a compressed representation of T supporting fast queries.