
  

Introduction to 
Wheeler Graphs/Automata 



  

BWT as a 
compressed index

Starting from the year 2000 several researchers 
observed that the BWT is strictly related to the 
Suffix Array 

That intuition is somewhat misleading...

Having seen 20+ years of research on the topic, 
we can offer an alternative view

Let’s start with a very basic search problem... 



  

Searching for substrings
of ABRACADABRA

We can use a DFA

Simple but not 
space efficient



  

Searching for substrings
of ABRACADABRA

Compacted Trie

More space efficient!



  

Searching for substrings
of ABRACADABRA

Suffix Tree

“theoretically” 
space efficient



  

Searching for substrings
of ABRACADABRA

We can use a NFA!

Every state initial & final
Extremely space efficient!

Searching is a headache 



  

Searching for substrings
of ABRACADABRA

Example: 
Searching ABR



  

Searching for substrings
of ABRACADABRA

Example: 
Searching ABR



  

Searching for substrings
of ABRACADABRA

Example: 
Searching ABR



  

Searching for substrings
of ABRACADABRA

Example: 
Searching ABR



  

NFAs made simpler 

NFA for
ABRACADABRA



  

NFAs made simpler 

“Naturally” assign
a label to each state



  

NFAs made simpler 

Arrange NFA states
according to labels 

“Naturally” assign
a label to each state



  

Searching in a sorted NFA

Example: 
Searching ABR



  

Searching in a sorted NFA

Example: 
Searching ABR



  

Searching in a sorted NFA

Example: 
Searching ABR



  

Searching in a sorted NFA

Example: 
Searching ABR

Two occurrences found!



  

NFAs made simpler 

Easy to search 
permuted NFA



  

NFAs made simpler 

No need to store
the state labels



  

NFAs made simpler 

Add one arc 
for symmetry

No need to store
the state labels



  

NFAs made simpler 

which is the BWT of
(ABRACADABRA)R

It suffices to store
the edge labels:

ABDBC$RRAAAA



  

Summing up

The BWT can be seen as: 

a tool to achieve order-k compression using an 
order-0 encoder (well known)

a stripped down version of the suffix array 
(earlier today)

a tool to compactly represent NFAs in a way 
which is “search friendly” (now)



  

Over the years we got BWT variants for 
searching and navigating string collections, 
tries, De Bruijn graphs, alignments, ...  

Most of them are equivalent to a properly 
reordered NFA

The graph representing such NFAs have the 
same egde ordering properties of the BWT 

Generalization



  

BWT-NFA representation:

Directed labeled graph with n ordered nodes
x(1)  x(2) ... x(n)

Each node has in-degree 1 and out-degree 1.

Each edge has a label over an alphabet A
  x(j) = E(x(i),c)   (edge x(i) → x(j) with label c)

Edge ordering properties:  ∀ i,j
a<b     E(x(i),a) < E(x(j), b)    
x(i) < x(j)  E(x(i),c) ≤ E(x(j),c) 



  

Wheeler Graph/Automata

Directed labeled graph with n ordered nodes
x(1)  x(2) ... x(n)

Nodes with in-degree 0 are the smallest

Each edge has a label over an alphabet A
  x(j) = E(x(i),c)   (edge x(i) → x(j) with label c)

Edge ordering properties:  ∀ i,j
a<b     E(x(i),a) < E(x(j), b)    
x(i) < x(j)  E(x(i),c) ≤ E(x(j),c) 



  

21 3 54 6 87

21 3 54 6 87

bg        bgr  gg        gr   gr   grlabels:

7

A colorful 8-node Wheeler graph
(Nodes are replicated as sources and sinks)
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bg        bgr  gg        gr   gr   gr

001  1    0001 001   1   001  001  001

1  001  0001   01  001   01  001  001

unary
out-degree

labels:

7

in-degree
unary

Succinct representation of a Wheeler graph

Starting nodes: b→    g→    r→2 3 7

[Bowe et al '12]



  

The standard representation for a graph with n 
nodes and m edges takes O(m log n) bits.

Because of their structure, Wheeler graphs  
can be represented in O(n+m) bits and still 
support constant time navigation.

If a NFA has an ordering that makes it a 
Wheeler graph we can exploit this succinct 
representation. 



  

a b

a ca cb

Example: given a labeled tree, we want to 
check whether there exists a path starting from 
the root spelling a given string p

The tree itself is a NFA solving this problem (the
root is the start state, all nodes are final)
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a b

a ca cb

Reasoning as before we can find an ordering that makes 
the NFA a Wheeler Automata: we automatically get a 
compact representation with efficient navigation and search

Recall: state labels are 
for our convenience, the 
algorithms don’t use them

The original tree



  

Historical reference:

T. Gagie, G. Manzini, J. Sirén, 

Wheeler graphs: A framework for BWT-based data Structures

Theoretical Computer Science, Vol 698, 2017

Clear exposition and pointers to recent results: 

N. Prezza,

Subpath Queries on Compressed Graphs: A Survey

Algorithms (MDPI), Vol. 14, 2021 
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