

Introduction to
Wheeler Graphs/Automata

BWT as a
compressed index

Starting from the year 2000 several researchers
observed that the BWT is strictly related to the
Suffix Array

That intuition is somewhat misleading...

Having seen 20+ years of research on the topic,
we can offer an alternative view

Let’s start with a very basic search problem...

Searching for substrings
of ABRACADABRA

We can use a DFA

Simple but not
space efficient

Searching for substrings
of ABRACADABRA

Compacted Trie

More space efficient!

Searching for substrings
of ABRACADABRA

Suffix Tree

“theoretically”
space efficient

Searching for substrings
of ABRACADABRA

We can use a NFA!

Every state initial & final
Extremely space efficient!

Searching is a headache

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

Searching for substrings
of ABRACADABRA

Example:
Searching ABR

NFAs made simpler

NFA for
ABRACADABRA

NFAs made simpler

“Naturally” assign
a label to each state

NFAs made simpler

Arrange NFA states
according to labels

“Naturally” assign
a label to each state

Searching in a sorted NFA

Example:
Searching ABR

Searching in a sorted NFA

Example:
Searching ABR

Searching in a sorted NFA

Example:
Searching ABR

Searching in a sorted NFA

Example:
Searching ABR

Two occurrences found!

NFAs made simpler

Easy to search
permuted NFA

NFAs made simpler

No need to store
the state labels

NFAs made simpler

Add one arc
for symmetry

No need to store
the state labels

NFAs made simpler

which is the BWT of
(ABRACADABRA)R

It suffices to store
the edge labels:

ABDBC$RRAAAA

Summing up

The BWT can be seen as:

a tool to achieve order-k compression using an
order-0 encoder (well known)

a stripped down version of the suffix array
(earlier today)

a tool to compactly represent NFAs in a way
which is “search friendly” (now)

Over the years we got BWT variants for
searching and navigating string collections,
tries, De Bruijn graphs, alignments, ...

Most of them are equivalent to a properly
reordered NFA

The graph representing such NFAs have the
same egde ordering properties of the BWT

Generalization

BWT-NFA representation:

Directed labeled graph with n ordered nodes
x(1) x(2) ... x(n)

Each node has in-degree 1 and out-degree 1.

Each edge has a label over an alphabet A
 x(j) = E(x(i),c) (edge x(i) → x(j) with label c)

Edge ordering properties: ∀ i,j
a<b E(x(i),a) < E(x(j), b)
x(i) < x(j) E(x(i),c) ≤ E(x(j),c)

Wheeler Graph/Automata

Directed labeled graph with n ordered nodes
x(1) x(2) ... x(n)

Nodes with in-degree 0 are the smallest

Each edge has a label over an alphabet A
 x(j) = E(x(i),c) (edge x(i) → x(j) with label c)

Edge ordering properties: ∀ i,j
a<b E(x(i),a) < E(x(j), b)
x(i) < x(j) E(x(i),c) ≤ E(x(j),c)

21 3 54 6 87

21 3 54 6 87

bg bgr gg gr gr grlabels:

7

A colorful 8-node Wheeler graph
(Nodes are replicated as sources and sinks)

21 3 54 6 87

21 3 54 6 87

bg bgr gg gr gr gr

001 1 0001 001 1 001 001 001

1 001 0001 01 001 01 001 001

unary
out-degree

labels:

7

in-degree
unary

Succinct representation of a Wheeler graph

Starting nodes: b→ g→ r→2 3 7

[Bowe et al '12]

The standard representation for a graph with n
nodes and m edges takes O(m log n) bits.

Because of their structure, Wheeler graphs
can be represented in O(n+m) bits and still
support constant time navigation.

If a NFA has an ordering that makes it a
Wheeler graph we can exploit this succinct
representation.

a b

a ca cb

Example: given a labeled tree, we want to
check whether there exists a path starting from
the root spelling a given string p

The tree itself is a NFA solving this problem (the
root is the start state, all nodes are final)

a

b

ba

bc

aa

ab

ac

c

a
b

b
a

c

a

ε
a b

a ca cb

Reasoning as before we can find an ordering that makes
the NFA a Wheeler Automata: we automatically get a
compact representation with efficient navigation and search

Recall: state labels are
for our convenience, the
algorithms don’t use them

The original tree

Historical reference:

T. Gagie, G. Manzini, J. Sirén,

Wheeler graphs: A framework for BWT-based data Structures

Theoretical Computer Science, Vol 698, 2017

Clear exposition and pointers to recent results:

N. Prezza,

Subpath Queries on Compressed Graphs: A Survey

Algorithms (MDPI), Vol. 14, 2021

References

	Slide 1
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 62

