Space efficient locating with the r-index

Gagie, Navarro, Prezza SODA 2017 \& JACM 2018

Locate on a BWT-index

We consider the problem of finding the position in the text of all pattern occurrences.

Recall we only have the first and last column (F and L)
$\mathrm{T}=$ swiss miss miss missing

Simple solution: uniform sampling store one out of t SA values

To find the position of an occ use te LF map to move backward untill we reach a stored value
the parametr t induces a trade-off: extra space: (n/t)log n bits locate time: $0(t)$ per occurence

F
miss miss missingswis miss missingswiss mis missingswiss miss mis gswiss miss miss missi ingswiss miss miss mis iss miss miss missings iss miss missingswiss
12 iss missingswiss miss
-ᄀ issingswiss miss miss
o miss miss missingswiss miss missingswiss miss missingswiss miss miss ngswiss miss miss miss s miss miss missingswi s miss missingswiss mi s missingswiss miss mi singswiss miss miss mi ss miss miss missingsw ss miss missingswiss m ss missingswiss miss m ssingswiss miss miss m
0 swiss miss miss missin
1 wiss miss miss missing

When the input is highly compressible (for example consists of many variants of the same sequence) it is more convenient to use an index of size $0(r)$ words where r is the number of runs in the BWT.

In this setting storing (n / t) SA entries space dominates the index size: using BWT properties we can save space by storing only $2 r$ SA entries

The resulting index is called the r-index [Gagie, Prezza, Navarro 2018]
r-Index: locate 1st occurrence

Toehold Lemma: to locate the lexicographically first occurrence of a pattern we only need the SA entries for rows containing the first occ of a run in L

Proof:
by induction on the backward search steps

Note: we also need the select operation on column L

	F		
5	miss miss missingswis	\| S	
	miss missingswiss mis	\| S	
	missingswiss miss mis	\| S	
22	gswiss miss miss missi	\| n	
20	ingswiss miss miss mis	S	
2	iss miss miss missings	\| W	
7	iss miss missingswiss	\|m	
	iss missingswiss miss	\| m	
	issingswiss miss miss	\| m	
0	miss miss missingswiss		
11	miss missingswiss miss		
	missingswiss miss miss		
$\angle \perp$	ngswiss miss miss miss	i	
4	s miss miss missingswi	\| ${ }^{\text {\| }}$	
0	s miss missingswiss mi	\| S	
	s missingswiss miss mi	S	
	singswiss miss miss mi	S	
	ss miss miss missingsw	i\|	
8	SS miss missingswiss m	i\|	
	ss missingswiss miss m	i	
	ssingswiss miss miss m	\| \mid	
\checkmark	swiss miss miss missin	g	
	wiss miss miss missing	S	

Example: searching "sis" in
T = swiss is sis sis missing
We only use the SA entries marked in red. The one in green are derived

Green arrows are applications of the LF map. Each LF application reduces the current position by 1

The first occurrence of "sis" is in text position 13

5 is sis sis missingswis |s| missingswiss is sis si |s| sis missingswiss is si |s| sis sis missingswiss i |s gswiss is sis sis/missi ingswiss is sis/sis mis
14 is missingswiss is sis is̄sis missingswiss is is sis sis missingswiss iss is sis sis missjings |w| issingswiss is sis sis missingswiss is sis sis ngswiss is sis sis miss stis sis sis missingswi
15 s missingswiss is sis sil s sis missingswiss is s |i| s sis sis missingswiss |i| singswiss is sis sis mi |s|
13 sis missingswiss is sis sis sis missingswiss is ss is sis sis missingsw |i| ssingswiss is sis sis m |i| swiss is sis sis missin $|g|$ wiss is sis sis missing |s|
r-Index: locate next occurrence

		1	1	2
0	5	0	5	0

$\mathrm{T}=$ swiss miss miss missing

SA values at end/begin of runs $(15,22),(22,20),(20,2)(2,7)$ $(17,6)(16,21),(21,4)(19,3)$ $(18,0),(0,1)$

Sorted pairs: $(0,1)(2,7),(15,22),(16,21)$ $(17,6)(18,0)(19,3)(20,2)$ $(21,4)(22,20)$

F
5 miss miss missingswis
10 miss missingswiss mis
15 missingswiss miss mis |s|
| S 22 gswiss miss miss missi |n| 20 ingswiss miss miss mis |s|
2 iss miss miss missings
7 iss miss missingswiss
12 iss missingswiss miss
17 issingswiss miss miss
6 miss miss missingswiss
11 miss missingswiss miss 16 missingswiss miss miss 21 ngswiss miss miss miss
4 s miss miss missingswi
9 s miss missingswiss mi
14 s missingswiss miss mi
19 singswiss miss miss mi
3 ss miss miss missingsw
8 ss miss missingswiss m
13 ss missingswiss miss m
18 ssingswiss miss miss m
0 swiss miss miss missin |g|
1 wiss miss miss missing |s|
r-Index: locate next occurrence

$T=$| | | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 5 | 0 | 5 | 0 |
| swiss | miss | miss | | missing |

Sorted pairs:
$(0,1)(2,7),(15,22),(16,21)$
$(17,6)(18,0)(19,3)(20,2)$
$(21,4)(22,20)$

Lemma: $L(p)=L(p+1) \quad q=L F(p)$ $q+1=L(p+1)$
rows ending with the same symbol stay together!

F

miss miss missingswis miss missingswiss mis missingswiss miss mis gswiss miss miss missi ingswiss miss miss mis iss miss miss missings iss miss missingswiss iss missingswiss miss issingswiss miss miss miss miss missingswiss miss missingswiss miss missingswiss miss miss ngswiss miss miss miss s miss miss missingswi s miss missingswiss mi s missingswiss miss mi singswiss miss miss mi ss miss miss missingsw ss miss missingswiss m ss missingswiss miss m ssingswiss miss miss m swiss miss miss missin wiss miss miss missing
r-Index: locate next occurrence

$\mathrm{T}=$| | | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 5 | 0 | 5 | 0 |
| SWiss | miss | miss | missing | |

Sorted pairs: $(0,1)(2,7),(15,22),(16,21)$ $(17,6)(18,0)(19,3)(20,2)$ $(21,4)(22,20)$

Given the text position of a row using a predecessor query of the sorted pairs we can retrieve the text position of the next row
miss miss missingswis miss missingswiss mis missingswiss miss mis gswiss miss miss missi ingswiss miss miss mis iss miss miss missings iss miss missingswiss iss missingswiss miss issingswiss miss miss miss miss missingswiss miss missingswiss miss missingswiss miss miss ngswiss miss miss miss s miss miss missingswi s miss missingswiss mi s missingswiss miss mi singswiss miss miss mi ss miss miss missingsw ss miss missingswiss m ss missingswiss miss m ssingswiss miss miss m swiss miss miss missin wiss miss miss missing
r-Index: locate next occurrence

Sorted pairs:

| $(0,1)(2,7),(15,22),(16,21)$ | |
| :--- | :--- | ---: |
| $(17,6)(18,0)(19,3)(20,2)$ | 16 |
| $(21,4)(22,20)$ | $?$ |
| | |
| Examples : | |
| $16->21$ (from the 4th pair) | |
| $3->2($ LF $)->7(2 n d$ pair $)->8$ | 3 |
| $10->2($ pred $)->7+(10-2)->15$ | $?$ |

The space/time bounds for the r-index are:
$O(r)$ words
$O((|p|+o c c) \log \log n)$ time
$O(r \log \log n)$ words
$O(|p|+o c c)$ time (optimal)

Timeline of BWT based indexing
1994 BWT (Burrows, Wheeler)
1997 bzip2 (Seward)
2000 Backward search (Ferragina, GM)
2003 Wavelet Trees (Gupta, Grossi, Vitter)
2017 r-index (Gagie, Navarro, Prezza) \longleftarrow It took 17 years $\begin{aligned} & \text { Next } \\ & \text { topic! }\end{aligned}>2017$ Wheeler-Graphs (Gagie, GM, Siren) to devise a space efficient locate

